Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Typhoon Rammasun Exit the Philippines

17.07.2014

Typhoon Rammasun passed through the central Philippines overnight and NASA satellite imagery showed that the storm's center moved into the South China Sea. NASA's TRMM satellite showed the soaking rains that Rammasun brought to the Philippines as it tracked from east to west.

Before Rammasun made landfall, the Tropical Rainfall Measuring Mission or TRMM satellite passed over the storm and measured cloud heights and rainfall rates. On July 14, 2014 at 18:19 UTC (2:19 p.m. EDT), TRMM spotted powerful, high thunderstorms reaching heights of almost 17km (10.5 miles).


On July 16, 2014 at 02:40 Typhoon Rammasun had already crossed the Philippines and entered the South China Sea as NASA's TRMM satellite passed overhead and captured this image.

Image Credit: NASA Goddard MODIS Rapid Response Team

Rain was measured falling at a rate of almost 102 mm (about 4 inches) per hour and that heavy rainfall continued as Rammasun made landfall in the central Philippines.

Rammasun made landfall near Legazpi City on July 15. Legazpi is the capital city of the province of Albay in the Philippines, located on the east coast.

On July 16, 2014 at 02:40 UTC (July 15 at 10:40 p.m. EDT) Typhoon Rammasun had already crossed the Philippines and entered the South China Sea when NASA's Terra satellite passed overhead. The Moderate Resolution Imaging Spectroradiometer or MODIS instrument provides high-resolution imagery and captured Rammasun after it moved west of Manila.

The eye of the typhoon had become obscured by clouds and was not apparent in the MODIS image. The typhoon also appeared somewhat elongated in a west-to-east direction.

On July 16 at 09:00 UTC (5 a.m. EDT), Typhoon Rammasun's maximum sustained winds were near 80 knots (92.0 mph/148.2 kph). The center was in the South China Sea, near 15.4 north latitude and 118.5 east longitude. It was about 114 nautical miles west-northwest of Manila and was moving to the northwest at 15 knots (17.2 mph/27.7 kph). The Joint Typhoon Warning Center expects Rammasun to strengthen to 105 knots (120.8 mph/194.5 kph) by July 18 before weakening again.

Typhoon Rammasun is expected to pass north of Hainan Island, China on July 18 around 0600 UTC (2 a.m. EDT). As a result, China Meteorological Administration (CMA) noted that Typhoon standby signal No 1 is expected to be raised today, July 16 as Typhoon Rammasun is expected to pass within about 500 miles (~ 800 kilometers) from Hong Kong. For current watches and warnings from CMA, visit: http://www.cma.gov.cn/en/WeatherWarnings/ActiveWarnings/201407/t20140716_252541.html.

The CMA expects Rammasun to approach the coastal area of eastern Hainan Island to western Guangxi on the mainland. Rammasun is forecast to make its next landfall at Lingshui, Hainan Island, and then in Yangjiang of the Guangdong Province of mainland China, early (local time) on July 18.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/09w-northwestern-pacific-ocean/

Further reports about: China EDT Flight Meteorological NASA Resolution Space Typhoon UTC Warning clouds satellite

More articles from Earth Sciences:

nachricht Oceans may be large, overlooked source of hydrogen gas
21.07.2016 | Duke University

nachricht Groundwater discharge to upper Colorado River Basin varies in response to drought
21.07.2016 | US Geological Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>