Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Sees Typhoon Rammasun Exit the Philippines


Typhoon Rammasun passed through the central Philippines overnight and NASA satellite imagery showed that the storm's center moved into the South China Sea. NASA's TRMM satellite showed the soaking rains that Rammasun brought to the Philippines as it tracked from east to west.

Before Rammasun made landfall, the Tropical Rainfall Measuring Mission or TRMM satellite passed over the storm and measured cloud heights and rainfall rates. On July 14, 2014 at 18:19 UTC (2:19 p.m. EDT), TRMM spotted powerful, high thunderstorms reaching heights of almost 17km (10.5 miles).

On July 16, 2014 at 02:40 Typhoon Rammasun had already crossed the Philippines and entered the South China Sea as NASA's TRMM satellite passed overhead and captured this image.

Image Credit: NASA Goddard MODIS Rapid Response Team

Rain was measured falling at a rate of almost 102 mm (about 4 inches) per hour and that heavy rainfall continued as Rammasun made landfall in the central Philippines.

Rammasun made landfall near Legazpi City on July 15. Legazpi is the capital city of the province of Albay in the Philippines, located on the east coast.

On July 16, 2014 at 02:40 UTC (July 15 at 10:40 p.m. EDT) Typhoon Rammasun had already crossed the Philippines and entered the South China Sea when NASA's Terra satellite passed overhead. The Moderate Resolution Imaging Spectroradiometer or MODIS instrument provides high-resolution imagery and captured Rammasun after it moved west of Manila.

The eye of the typhoon had become obscured by clouds and was not apparent in the MODIS image. The typhoon also appeared somewhat elongated in a west-to-east direction.

On July 16 at 09:00 UTC (5 a.m. EDT), Typhoon Rammasun's maximum sustained winds were near 80 knots (92.0 mph/148.2 kph). The center was in the South China Sea, near 15.4 north latitude and 118.5 east longitude. It was about 114 nautical miles west-northwest of Manila and was moving to the northwest at 15 knots (17.2 mph/27.7 kph). The Joint Typhoon Warning Center expects Rammasun to strengthen to 105 knots (120.8 mph/194.5 kph) by July 18 before weakening again.

Typhoon Rammasun is expected to pass north of Hainan Island, China on July 18 around 0600 UTC (2 a.m. EDT). As a result, China Meteorological Administration (CMA) noted that Typhoon standby signal No 1 is expected to be raised today, July 16 as Typhoon Rammasun is expected to pass within about 500 miles (~ 800 kilometers) from Hong Kong. For current watches and warnings from CMA, visit:

The CMA expects Rammasun to approach the coastal area of eastern Hainan Island to western Guangxi on the mainland. Rammasun is forecast to make its next landfall at Lingshui, Hainan Island, and then in Yangjiang of the Guangdong Province of mainland China, early (local time) on July 18.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:

Further reports about: China EDT Flight Meteorological NASA Resolution Space Typhoon UTC Warning clouds satellite

More articles from Earth Sciences:

nachricht Field widens for environments, microbes that produce toxic form of mercury
12.10.2015 | DOE/Oak Ridge National Laboratory

nachricht Unexpected information about Earth's climate history from Yellow River sediment
09.10.2015 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>