Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Sees Typhoon Halong's Eye Wink


As Super Typhoon Halong tracks north through the Northwestern Pacific Ocean, NASA's Aqua and Terra satellites have seen the powerful storm appear to wink at space as it developed and "opened" an eye and then close its eye as clouds moved over it. That wink appears to be a sign of eyewall replacement in the powerful storm.

On August 2 at 01:45 UTC (August 1 at 9:45 p.m. EDT) NASA's Terra satellite captured a visible image of a wide-eyed Super Typhoon Halong moving through the Northwestern Pacific Ocean. At the time of the image, Halong was a powerful Category 5 Super Typhoon on the Saffir-Simpson Scale. Satellite data showed that Halong had a 10-nautical mile (11.5 mile/18.5 km) wide eye.

On August 4 at 12:40 a.m. EDT NASA's Aqua satellite captured this visible image of Typhoon Halong and its cloud-filled eye as it continued tracking north toward Japan.

Image Credit: NASA Goddard MODIS Rapid Response Team

On August 2 at 01:45 UTC NASA's Terra satellite captured this visible image of a wide-eyed Typhoon Halong moving through the Northwestern Pacific Ocean.

Image Credit: NASA Goddard MODIS Rapid Response Team

On August 4 at 04:40 UTC (12:40 a.m. EDT), NASA's Aqua satellite captured a visible image of Super Typhoon Halong that showed its eye had become cloud filled. The image also showed that the bulk of strongest bands of thunderstorms were over the southern quadrant of the storm.

Forecasters at the Joint Typhoon Warning Center or JTWC noted that microwave satellite imagery suggests an on-going eyewall replacement. That's when the thunderstorms that circle the eye of a powerful hurricane are replaced by other thunderstorms. Basically, a new eye begins to develop around the old eye.

Many intense hurricanes undergo at least one of these eyewall replacements during their existence. JTWC noted that the eyewall replacement correlates to the recent weakening trend.

On Monday, August 4, Super Typhoon Halong's maximum sustained winds had dropped to near 105 knots (120.8 mph/190.4 kph), making it a Category Two hurricane on the Saffir-Simpson Scale. On August 3, Halong was a Super Typhoon with maximum sustained winds near 130 knots (149.6 mph/240.8 kph) on August 3, which made it a Category Four storm.

On August 4, Halong was centered near 17.3 north and 130.3 east, about 588 nautical miles (676.7 miles/1,089 km) south-southeast of Kadena Air Base, Okinawa, Japan. Halong was moving northwest at 4 knots (4.6 mph/7.4 kph). Because Halong is such a powerful storm, it is generating extremely rough seas. The Joint Typhoon Warning Center noted that wave heights were near 42 feet (12.8 meters).

The JTWC expects Halong to continue moving in a northerly direction for the next couple of days.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:

Further reports about: Category Eye JTWC NASA Super Typhoon UTC Warning hurricane knots satellite thunderstorms winds

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>