Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Typhoon Halong's Eye Wink

05.08.2014

As Super Typhoon Halong tracks north through the Northwestern Pacific Ocean, NASA's Aqua and Terra satellites have seen the powerful storm appear to wink at space as it developed and "opened" an eye and then close its eye as clouds moved over it. That wink appears to be a sign of eyewall replacement in the powerful storm.

On August 2 at 01:45 UTC (August 1 at 9:45 p.m. EDT) NASA's Terra satellite captured a visible image of a wide-eyed Super Typhoon Halong moving through the Northwestern Pacific Ocean. At the time of the image, Halong was a powerful Category 5 Super Typhoon on the Saffir-Simpson Scale. Satellite data showed that Halong had a 10-nautical mile (11.5 mile/18.5 km) wide eye.


On August 4 at 12:40 a.m. EDT NASA's Aqua satellite captured this visible image of Typhoon Halong and its cloud-filled eye as it continued tracking north toward Japan.

Image Credit: NASA Goddard MODIS Rapid Response Team


On August 2 at 01:45 UTC NASA's Terra satellite captured this visible image of a wide-eyed Typhoon Halong moving through the Northwestern Pacific Ocean.

Image Credit: NASA Goddard MODIS Rapid Response Team

On August 4 at 04:40 UTC (12:40 a.m. EDT), NASA's Aqua satellite captured a visible image of Super Typhoon Halong that showed its eye had become cloud filled. The image also showed that the bulk of strongest bands of thunderstorms were over the southern quadrant of the storm.

Forecasters at the Joint Typhoon Warning Center or JTWC noted that microwave satellite imagery suggests an on-going eyewall replacement. That's when the thunderstorms that circle the eye of a powerful hurricane are replaced by other thunderstorms. Basically, a new eye begins to develop around the old eye.

Many intense hurricanes undergo at least one of these eyewall replacements during their existence. JTWC noted that the eyewall replacement correlates to the recent weakening trend.

On Monday, August 4, Super Typhoon Halong's maximum sustained winds had dropped to near 105 knots (120.8 mph/190.4 kph), making it a Category Two hurricane on the Saffir-Simpson Scale. On August 3, Halong was a Super Typhoon with maximum sustained winds near 130 knots (149.6 mph/240.8 kph) on August 3, which made it a Category Four storm.

On August 4, Halong was centered near 17.3 north and 130.3 east, about 588 nautical miles (676.7 miles/1,089 km) south-southeast of Kadena Air Base, Okinawa, Japan. Halong was moving northwest at 4 knots (4.6 mph/7.4 kph). Because Halong is such a powerful storm, it is generating extremely rough seas. The Joint Typhoon Warning Center noted that wave heights were near 42 feet (12.8 meters).

The JTWC expects Halong to continue moving in a northerly direction for the next couple of days.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/11w-northwestern-pacific-ocean/

Further reports about: Category Eye JTWC NASA Super Typhoon UTC Warning hurricane knots satellite thunderstorms winds

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>