Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Tropical Storm Yagi Spinning in Western Pacific Ocean

11.06.2013
Tropical Storm Yagi developed over the weekend of June 8 and 9 in the Western North Pacific from Tropical Depression 03W and NASA satellites captured the storm coming together. NASA’s TRMM satellite measured rainfall rates within the storm and found the heaviest rain falling mostly south of the center.

NASA and the Japanese Space Agency’s Tropical Rainfall Measuring Mission or TRMM satellite captured the rate rain was falling within Tropical Storm Yagi on June 10 at 8:19 a.m. EDT. The heaviest rain was falling south of the center around the center of circulation at as much as 1.2 inches (30.4 mm) per hour.


NASA’s TRMM satellite captured the rate rain was falling within Tropical Storm Yagi on June 10 at 8:19 a.m. EDT. The heaviest rain was falling around the center of circulation at as much as 1.2 inches per hour. TRMM data was overlaid on infrared cloud imagery from the MTSAT-2 satellite. Credit: NASA/NRL

On June 10, 2013 at 1500 UTC (11 a.m. EDT), Tropical Storm Yagi had maximum sustained winds near 45 knots (51.7 mph/83.3 kph), which is expected to be its peak wind speed. Yagi was located near 25.0 north and 135.2 east, about 344 nautical miles (396 miles/ 637.1 km) west of Iwo Jima, Japan. Yagi is moving to the northeast at 12 knots (13.8 mph/22.2 kph).

According to the Joint Typhoon Warning Center, animated infrared imagery reveals a tightly wrapped low-level circulation center that is surrounded by shallow convection. Strong convection (rising air that forms thunderstorms) appears limited in the tropical storm.

To the north of Yagi, vertical wind shear is moderate (between 15 and 20 knots/17.2 and 23.0/ 27.7 and 37.0 kph), and wind shear inhibits development of thunderstorms. Wind shear is a measure of how the speed and direction of winds change with altitude. Water vapor imagery shows that there is sinking air (subsidence) along the western edge of the storm, which is also inhibiting the development of thunderstorms.

Sea surface temperatures remain warm enough to support Yagi, so the storm is expected to maintain strength for the next 24 hours as it moves northeast. Yagi is expected to dissipate south of Japan sometime before June 14.

Text credit: Rob Gutro
NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Yagi.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>