Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Sees Tropical Storm Yagi Spinning in Western Pacific Ocean

Tropical Storm Yagi developed over the weekend of June 8 and 9 in the Western North Pacific from Tropical Depression 03W and NASA satellites captured the storm coming together. NASA’s TRMM satellite measured rainfall rates within the storm and found the heaviest rain falling mostly south of the center.

NASA and the Japanese Space Agency’s Tropical Rainfall Measuring Mission or TRMM satellite captured the rate rain was falling within Tropical Storm Yagi on June 10 at 8:19 a.m. EDT. The heaviest rain was falling south of the center around the center of circulation at as much as 1.2 inches (30.4 mm) per hour.

NASA’s TRMM satellite captured the rate rain was falling within Tropical Storm Yagi on June 10 at 8:19 a.m. EDT. The heaviest rain was falling around the center of circulation at as much as 1.2 inches per hour. TRMM data was overlaid on infrared cloud imagery from the MTSAT-2 satellite. Credit: NASA/NRL

On June 10, 2013 at 1500 UTC (11 a.m. EDT), Tropical Storm Yagi had maximum sustained winds near 45 knots (51.7 mph/83.3 kph), which is expected to be its peak wind speed. Yagi was located near 25.0 north and 135.2 east, about 344 nautical miles (396 miles/ 637.1 km) west of Iwo Jima, Japan. Yagi is moving to the northeast at 12 knots (13.8 mph/22.2 kph).

According to the Joint Typhoon Warning Center, animated infrared imagery reveals a tightly wrapped low-level circulation center that is surrounded by shallow convection. Strong convection (rising air that forms thunderstorms) appears limited in the tropical storm.

To the north of Yagi, vertical wind shear is moderate (between 15 and 20 knots/17.2 and 23.0/ 27.7 and 37.0 kph), and wind shear inhibits development of thunderstorms. Wind shear is a measure of how the speed and direction of winds change with altitude. Water vapor imagery shows that there is sinking air (subsidence) along the western edge of the storm, which is also inhibiting the development of thunderstorms.

Sea surface temperatures remain warm enough to support Yagi, so the storm is expected to maintain strength for the next 24 hours as it moves northeast. Yagi is expected to dissipate south of Japan sometime before June 14.

Text credit: Rob Gutro
NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>