Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Storm Sanvu continue to intensify

24.05.2012
Two NASA satellites have provided infrared and rainfall data that has shown Tropical Storm Sanvu continues to intensify as it heads toward Iwo To, Japan.

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite has scanned rainfall rates, and NASA's Aqua satellite has provided a look at cloud temperatures which indicates where the strongest thunderstorms and heaviest rainfall is occurring.

The TRMM satellite saw the intensifying storm on May 22, 2012 at 1535 UTC when wind speeds had reached to over 45 knots (~52 mph). Data from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments show that Sanvu had a very large area of heavy rainfall wrapping around the northeastern side. TRMM's PR also shows that the highest convective storm towers, reaching to heights above 16km (~9.9 miles), were in a feeder band on the southeastern side.

On May 23, the TRMM passed over Sanvu again after it had strengthened further, and captured more data. That data was used to create another 3-D analysis at NASA's Goddard Space Flight Center in Greenbelt, Md. The 3-D image created from TRMM PR data revealed that an eye was almost formed indicating that Sanvu may soon be a typhoon. Several towers in the forming eye wall extend to heights above 16km (~9.94 miles). These towers contain the heaviest rains and act to energize the core of the storm.

On May 23 at 1500 UTC (11 a.m. EDT), Tropical Storm Sanvu has maximum sustained winds near 60 knots (69 mph/111 kph). It was located about 450 nautical miles south-southwest of Iwo To, Japan and moving toward the island in a northwesterly direction at 10 knots (11.5 mph/18.5 kph). Sanvu's center is near 17.8 North and 139.2 East.

Infrared satellite imagery from NASA's Atmospheric Infrared Sounder (AIRS) instrument onboard NASA's Aqua satellite showed that Sanvu's feeder bands were mostly on the eastern side of the center of circulation and have become more tightly wrapped around the center. Those thunderstorms within the feeder bands have also strengthened. The strongest storms have a cloud top temperature colder than -63F (-52C) indicating they are high in the troposphere and powerful.

Sanvu is predicted to intensify further and become the first western Pacific typhoon of 2012. One factor that is helping Sanvu continue to intensify is the warm sea surface temperatures at 86 degrees Fahrenheit (30 Celsius).

The current forecast track takes it just east of Iwo To and Chichi Jima, which may experience typhoon conditions on May 25 and 26, respectively.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>