Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Storm Leslie was causing a problem for itself

06.09.2012
Infrared data from NASA's Aqua satellite shows that Tropical Storm Leslie has been causing problems for itself.

Tropical Storm Leslie has been on a slow track in the Atlantic, and because of that, the storm is kicking up cooler waters from below the ocean surface.


NASA's Aqua satellite flew over Tropical Storm Leslie on Sept. 5 at 0611 UTC (2:11 a.m. EDT) and noticed the strongest convection (purple) and coldest cloud top temperatures in a large area surrounding the center of circulation and in a band of thunderstorms to the east of the center. Leslie swept up cooler waters from below the surface on its slow track that slowed the storm's ability to strengthen.

Credit: NASA JPL, Ed Olsen

Those cooler waters were seen in infrared imagery on Sept. 5 at 0611 UTC (2:11 a.m. EDT) taken by the Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite.

The cooler waters are responsible for Leslie's slow strengthening. Sea surface temperatures need to be at least as warm as 80 degrees Fahrenheit (26.6 Celsius) to maintain a tropical cyclone. When a tropical cyclone moves slowly, however, it churns up the waters below the surface, which are cooler. That cooler water saps the tropical cyclone's strength.

Infrared satellite data from NASA's AIRS instrument has often seen a "cold water wake" trailing behind a tropical cyclone. That's the cold water drawn up to the ocean's surface as the tropical cyclone passes by.

If there's another tropical cyclone behind the one that stirs up the deeper, cooler, ocean water, the second storm tends to weaken in the cold water wake.

Other than cool sea surface temperatures, Leslie has been battling wind shear, which has kept the storm below hurricane strength so far. That's changing, though, as the vertical shear has been gradually decreasing today, Sept. 5. As a result of the weaker wind shear, forecasters at the National Hurricane Center noticed a "banding eye feature" in visible satellite imagery.

The AIRS data of Tropical Storm Leslie confirmed the visible imagery. AIRS infrared data showed the strongest convection (rising air that forms thunderstorms) and coldest cloud top temperatures were in a large area surrounding the center of circulation and in a band of thunderstorms to the east of the center.

On Sept. 5 at 11 a.m. EDT, Leslie was close to hurricane strength with maximum sustained winds near 70 mph (110 kmh). Leslie is expected to reach hurricane status later in the day as the wind shear eases. Leslie's center was about 470 miles (760 km) south-southeast of Bermuda, near latitude 25.7 north and longitude 62.8 west. Leslie is moving toward the north near 2 mph (4 kmh).

Leslie is expected to continue crawling and wobbling to the north and north-northwest over the next couple of days because it is being blocked by a ridge (elongated area) of high pressure to the north and east of the storm. A strong trough (elongated area) of low pressure is expected to move out of southern Canada toward the southeastern U.S. and is expected to push Leslie northward in a couple of days.

The National Hurricane Center noted that Leslie will continue bring rough surf to Bermuda and the U.S. east coast from central Florida northward, the Northern Leeward islands, Puerto Rico and the Virgin Islands over the next couple of days.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>