Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Storm Hernan near Mexico's Baja California

29.07.2014

Tropical Storm Hernan developed over this past weekend and reached hurricane strength before vertical wind shear kicked in and kicked the storm down.

NASA's Terra satellite passed over Hernan when it was developing as a tropical depression near Baja California, Mexico.

Terra Image of Hernan

This visible image of Tropical Storm Hernan (as Tropical Depression 8E) near Baja California, Mexico was taken on July 26 at 2:05 p.m. EDT by NASA's Terra satellite.

Credit: NASA Goddard MODIS Rapid Response Team

Tropical Storm Hernan was born on Saturday, July 26 at 5 a.m. EDT as Tropical Depression 8-E. By 5 p.m. EDT it strengthened into Tropical Storm Hernan. At 11 a.m. EDT on Sunday, July 27, Hernan's maximum sustained winds were already up to 70 mph, just four miles per hour shy of hurricane status.

As Hernan passed west of Socorro Island at 5 p.m. EDT on July 28 it reached hurricane status when its maximum sustained winds reached 75 mph (120 kph). It remained a hurricane for about 12 hours before dropping back to a tropical storm on July 29 at 5 a.m. EDT when maximum sustained winds were near 70 mph (110 kph).

Hernan moved into an area of persistent westerly wind shear blowing at between 15 to 20 knots (17.2 to 23.0 mph/27.8 to 37.0 kph). That wind shear is deteriorating the cyclone's organization.

Infrared satellite data from instruments like the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite showed that the cloud top temperatures were warming. Warming cloud tops means that the uplift of air had weakened.

Uplift is air that pushes thunderstorms into the top of the troposphere. The higher the thunderstorm cloud top, the colder it is (because the troposphere cools as you go higher). Higher, colder cloud tops in thunderstorms mean stronger thunderstorms.

Visible satellite data today indicated "a rather shapeless cloud pattern," according to the National Hurricane Center. That means the circulation is less organized.

At 11 a.m. EDT (1500 UTC) on July 28, Tropical Storm Hernan's maximum sustained winds were down to 65 mph (100 kph). It was centered near 20.5 north latitude and 115.9 west longitude, about 420 miles west-southwest (675 km) of the southern tip of Baja California. Hernan is moving toward the northwest near 16 mph (26 kph) and is forecast to continue through Tuesday night, July 29, followed by a turn to the west.

Forecaster Roberts at the National Hurricane Center noted today, July 28 that in addition to being battered by wind shear, "an increasingly stable air mass and decreasing sea surface temperatures should ultimately weaken Hernan into a shallow post-tropical cyclone in 48 hours."

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>