Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Storm Gabrielle resurrected in the Atlantic, Global Hawk to investigate

11.09.2013
NASA's Aqua satellite passed over the resurrected Tropical Storm Gabrielle in the Atlantic Ocean today, Sept. 10, 2013 and captured infrared data. Meanwhile, one of NASA's Global Hawk unmanned aircraft has set out to investigate the storm and gather data on the storm that reformed south of Bermuda.
NASA's Aqua satellite passed over the resurrected Tropical Storm Gabrielle on Sept. 10 at 0559 UTC/1:59 a.m. EDT, hours before it regained strength as a tropical storm. The Atmospheric Infrared Sounder or AIRS instrument aboard Aqua detected cloud-top temperatures of powerful thunderstorms that were colder than -63F/-52C. Cloud tops that extend that high into the troposphere indicate strong uplift in the storm, and are indicative of the potential for heavy rainfall.

After NASA's Aqua satellite passed overhead, NASA sent out an unmanned aircraft from the Hurricane and Severe Storms Sentinel or HS3 mission. HS3 features NASA's two remotely piloted Global Hawks. During the mission, both aircraft are being flown remotely from the HS3 mission base at NASA's Wallops Flight Facility in Wallops Island, Va. At 9:58 a.m. EDT today, Sept. 10, NASA's Global Hawk 871 took off to begin HS3 Science Flight number 7 to fly into Tropical Storm Gabrielle.

NASA's Aqua satellite passed over the resurrected Tropical Storm Gabrielle on Sept. 10 at 0559 UTC/1:59 a.m. EDT and detected cloud-top temperatures of powerful thunderstorms (purple) that were colder than -63F/-52C.

Credit: NASA JPL/Ed Olsen

Another satellite was used to provide a look at the redevelopment of Gabrielle. NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. created a 27 second video animation of imagery from NOAA's GOES-East satellite from Sept. 8 to 10 that shows Tropical Storm Gabrielle's resurrection. In the GOES satellite imagery, most of the clouds and showers are northeast of the center of circulation.

At 11 a.m. EDT/1500 UTC Gabrielle had maximum sustained winds are near 40 mph/65 kph and some strengthening is forecast during the next 48 hours, according to the National Hurricane Center. Gabrielle was located near latitude 30.6 north and longitude 65.0 west, about 120 miles/190 km south of Bermuda. Gabrielle is moving toward the north near 12 mph/19 kph and is expected to continue in that direction through tonight before turning northwest and slowing down. The National Hurricane Center noted that Gabrielle is expected to pass over or near Bermuda tonight and early Wednesday, Sept. 11.

At 11 a.m. EDT, sustained winds in Bermuda were from the southwest at 13 mph and are expected to pick up as Gabrielle comes closer. A tropical storm warning is in effect for Bermuda. According to the NHC, Gabrielle is expected to produce rainfall amounts of 3 to 5 inches over Bermuda with isolated maximum totals of 7 inches possible. Bermuda can expect storm surge of 2 to 3 feet above normal tide levels, and tropical-storm-force winds are expected to begin there tonight.

For more information about NASA's HS3 Hurricane Mission, visit: http://www.nasa.gov/HS3

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>