Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Tropical Storm Bolaven Making Landfall in North Korea

29.08.2012
Tropical Storm Bolaven weakened as it moved north through the cooler waters of the Yellow Sea in the last day, which is good news for North Korea and southeastern China where it is making landfall today, Aug. 28.

On Aug. 27, NASA's Tropical Rainfall Measuring Mission or TRMM satellite monitored the rainfall rates within Tropical Storm Bolaven. At the time TRMM passed over, Bolaven was still a typhoon. TRMM captured rainfall data at 0917 UTC (about 5:17 p.m. Korea local time/5:17 a.m. EDT) and at 12:33 UTC (8:33 p.m. Korea local time/8:33 a.m. EDT).


At 12:55 a.m. EDT (4:55 UTC) on Aug. 28, the MODIS instrument on NASA's Aqua satellite captured this visible image of Tropical Storm Bolaven's clouds over North and South Korea and China. Note the large open center of circulation. Credit: NASA Goddard MODIS Rapid Response Team

Bolaven has been generating heavy rainfall and that has been falling over both South and North Korea. Data from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments showed that numerous rain bands north of Bolaven's center were dropping precipitation at a rate greater than 75 mm/hr (~2.95 inches). That heavy rainfall is cause for concern of flooding as Bolaven makes landfall and moves inland over North Korea and southeastern China.

At 12:55 a.m. EDT (4:55 UTC/12:55 p.m. Korea local time) on Aug. 28, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Aqua satellite captured a high-resolution visible image of Tropical Storm Bolaven centered in the Yellow Sea. Its center of circulation was cloud-free and appeared very large on satellite imagery. Bolaven's cloud cover was extensive and blanketed North and South Korea, southeastern China and southern Japan.

Both the TRMM and the MODIS imagery were created at NASA's Goddard Space Flight Center in Greenbelt, Md. The data from both satellites is shared with the forecasters at the Joint Typhoon Warning Center who use it to make their forecasts.

On Aug. 28 at 0900 UTC (5 a.m. EDT/5 p.m. local time, North Korea), Tropical Storm Bolaven had maximum sustained winds near 55 knots (63.2 mph/102 kmh). It was located about 115 nautical miles (132.3 miles/213 km) west of Seoul, South Korea near 38.1 North latitude and 124.9 East longitude. Bolaven was moving to the north-northeastward at 23 knots (26.4 mph/42.6 kmh) and generating very rough waters in the Yellow Sea, with wave heights to 34 feet (10.3 meters).

Forecasters at the Joint Typhoon Warning Center (JTWC) noted that multi-spectral satellite imagery is showing today, Aug. 28, that the low-level circulation center is expanding and deteriorating as stratocumulus clouds surround the system. Wind shear from the south-southeast has been pushing the bulk of clouds and showers to the north and northeast of the center of circulation, over North and South Korea.

The JTWC forecast calls for Bolaven to continue moving to the north-northeast into Northern Korea later on Aug. 28 and become extra-tropical over land in the next day.

Text Credit: Rob Gutro and Hal Pierce
SSAI/ NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Bolaven.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>