Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Nathan sporting hot towers, heavy rainfall

19.03.2015

The TRMM satellite revealed that Tropical Cyclone Nathan had powerful thunderstorms known as "hot towers" near its center which are indicative of a strengthening storm.

Cyclone Nathan is located in the Coral Sea off Australia's Queensland coast. Nathan formed on March 10 near the Queensland coast triggering warnings there before moving east. Once out at sea, Nathan made a loop and headed back to Queensland.


TRMM showed that the heaviest rainfall occurring in Nathan on March 18 at 0758 UTC (3:58 a.m. EDT) was falling at a rate of over 119 mm (4.7 inches) on the eastern side of Nathan's eye. TRMM Precipitation Radar data were used to create a 3-D view that showed storm heights of over 9.9 miles.

Credit: NASA/JAXA/SSAI, Hal Pierce

On March 18, Nathan was nearing the Cape York Peninsula of Queensland. As a result warnings were in effect from Cape Melville to Innisfail, extending inland to Laura. Under watch is the area from Lockhart River to Cape Melville, extending inland to areas including Palmerville.

NASA-JAXA's Tropical Rainfall Measuring Mission or TRMM satellite showed that the heaviest rainfall occurring in Tropical Cyclone Nathan on March 18 at 0758 UTC (3:58 a.m. EDT) was falling at a rate of over 119 mm (4.7 inches) on the eastern side of Nathan's eye.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, TRMM Precipitation Radar data were used to create a 3-D view of cyclone Nathan that showed storm heights in a rain band circling the storm's northwestern side reached heights of over 16 km (9.9 miles). Those data also showed "hot towers" or storm tops in Nathan's eyewall were reaching heights of over 13 km (8 miles).

"A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately nine miles (14.5 km) high in the tropics. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower.

On Mar. 18 at 0900 UTC (5 a.m. EDT), the Joint Typhoon Warning Center (JTWC) noted that Nathan had reached hurricane force with maximum sustained winds near 65 knots (75 mph/120.4 kph). It was centered near 14.9 south latitude and 148.9 east longitude, about 225 nautical miles (258.9 miles/416.7 km) east-northeast of Cairns, Queensland, Australia. It was moving to the west at 2 knots (2.3 mph/3.7 kph) and generating wave heights to 22 feet (6.7 meters).

The MODIS instrument that flies aboard NASA's Aqua satellite captured a visible image of Tropical Cyclone Nathan off the Queensland, Australia coast on March 18, 2015 at 04:15 UTC (12:15 a.m. EDT). The MODIS instrument showed a pinhole eye, about 5 nautical miles (5.7 miles/9.2 km) wide.

JTWC forecasters noted that Nathan is moving into an area of warm sea surface temperatures that will allow the storm to strengthen before making landfall on the Cape York Peninsula. JTWC forecasts call for Nathan to strengthen to 85 knots (97.8 mph/157.4 kph) by March 19 at 0600 UTC (2 a.m. EDT). For updated warnings and forecasts from the Australian Bureau of Meteorology, visit: http://www.bom.gov.au/cyclone/.

It is forecast to make landfall north of Cairns on March 19 (by 1800 UTC) and move in a west-northwesterly direction across the Cape York Peninsula and into the Gulf of Carpentaria.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>