Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Narelle form in Southern Indian Ocean

09.01.2013
The eighth tropical cyclone to form during the Southern Indian Ocean cyclone season formed from low pressure System 98S and became Tropical Cyclone Narelle.

NASA's TRMM satellite passed over System 98S and saw the hallmark "hot towers" that indicated the storm would soon likely intensify into Tropical Storm Narelle.


NASA's TRMM satellite passed over System 98S on Jan. 7 at 4:01 a.m. EST/US hours before it intensified into Tropical Storm Narelle. TRMM saw two bands of strong thunderstorms west and northwest of the center where heavy rainfall (red) was occurring.

Credit: NASA/SSAI, Hal Pierce

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over System 98S on Jan. 7 at 0901 UTC (4:01 a.m. EST/U.S.) hours before it intensified into Tropical Storm Narelle.

TRMM's Precipitation Radar instrument captured estimates of rainfall occurring in the storm. TRMM noticed two bands of strong thunderstorms west and northwest of the center of circulation where rainfall was occurring at more than 2 inches/50 mm per hour. Some of those thunderstorms were "hot towers," or large towering thunderstorms.

A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately nine miles (14.5 km) high in the tropics. The hot towers in System 98S were over 9.3 miles (15 km) high. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower. System 98S became Tropical Storm Narelle on Jan. 7 at 1800 UTC (1 p.m. EST/U.S.).

On Jan. 8, infrared satellite imagery showed that the low-level circulation center was consolidating (organizing). Just as the TRMM satellite showed improved convective (rising air that forms the thunderstorms that make up the tropical cyclone) banding in the western and northern quadrants of the storm on Jan. 7, infrared satellite data on Jan. 8 showed improved deep convective banding over the southeast quadrant of the system.

On Jan. 8 at 1500 UTC (10 a.m. EST/U.S.), Tropical cyclone Narelle had maximum sustained winds near 45 knots (51.7 mph/83.3 kph). The center of Narelle was located near 12.8 south latitude and 117.4 east longitude, about 605 miles north-northeast of Learmonth, Australia. Narelle was moving to the southwest at 9 knots (10.3 mph/16.6 kph).

Forecasters at the Joint Typhoon Warning Center (JTWC) take Narelle on a south-southwestward journey as a result of moving around the northwestern edge of a low-to-mid-level subtropical ridge (elongated area) of high pressure, located to the east and southeast of the system. That's because high pressure systems in the southern hemisphere rotate counter-clockwise.

JTWC forecasters expect that Narelle will continue to intensify and may reach wind speeds of 130 knots in three days as it nears Learmonth, Western Australia. The current forecast track, however, keeps the center at sea, but the eastern half of the storm is expected to impact the far western part of West Australia, including Learmonth. If the cyclone gets that strong, that would mean very rough seas and some coastal erosion, possible heavy rainfall and gusty winds for that area. Currently, there are no warnings in effect for Western Australia, but residents should monitor their local forecasts.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Researchers reveal how microbes cope in phosphorus-deficient tropical soil
23.01.2018 | DOE/Oak Ridge National Laboratory

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>