Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Narelle form in Southern Indian Ocean

09.01.2013
The eighth tropical cyclone to form during the Southern Indian Ocean cyclone season formed from low pressure System 98S and became Tropical Cyclone Narelle.

NASA's TRMM satellite passed over System 98S and saw the hallmark "hot towers" that indicated the storm would soon likely intensify into Tropical Storm Narelle.


NASA's TRMM satellite passed over System 98S on Jan. 7 at 4:01 a.m. EST/US hours before it intensified into Tropical Storm Narelle. TRMM saw two bands of strong thunderstorms west and northwest of the center where heavy rainfall (red) was occurring.

Credit: NASA/SSAI, Hal Pierce

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over System 98S on Jan. 7 at 0901 UTC (4:01 a.m. EST/U.S.) hours before it intensified into Tropical Storm Narelle.

TRMM's Precipitation Radar instrument captured estimates of rainfall occurring in the storm. TRMM noticed two bands of strong thunderstorms west and northwest of the center of circulation where rainfall was occurring at more than 2 inches/50 mm per hour. Some of those thunderstorms were "hot towers," or large towering thunderstorms.

A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately nine miles (14.5 km) high in the tropics. The hot towers in System 98S were over 9.3 miles (15 km) high. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower. System 98S became Tropical Storm Narelle on Jan. 7 at 1800 UTC (1 p.m. EST/U.S.).

On Jan. 8, infrared satellite imagery showed that the low-level circulation center was consolidating (organizing). Just as the TRMM satellite showed improved convective (rising air that forms the thunderstorms that make up the tropical cyclone) banding in the western and northern quadrants of the storm on Jan. 7, infrared satellite data on Jan. 8 showed improved deep convective banding over the southeast quadrant of the system.

On Jan. 8 at 1500 UTC (10 a.m. EST/U.S.), Tropical cyclone Narelle had maximum sustained winds near 45 knots (51.7 mph/83.3 kph). The center of Narelle was located near 12.8 south latitude and 117.4 east longitude, about 605 miles north-northeast of Learmonth, Australia. Narelle was moving to the southwest at 9 knots (10.3 mph/16.6 kph).

Forecasters at the Joint Typhoon Warning Center (JTWC) take Narelle on a south-southwestward journey as a result of moving around the northwestern edge of a low-to-mid-level subtropical ridge (elongated area) of high pressure, located to the east and southeast of the system. That's because high pressure systems in the southern hemisphere rotate counter-clockwise.

JTWC forecasters expect that Narelle will continue to intensify and may reach wind speeds of 130 knots in three days as it nears Learmonth, Western Australia. The current forecast track, however, keeps the center at sea, but the eastern half of the storm is expected to impact the far western part of West Australia, including Learmonth. If the cyclone gets that strong, that would mean very rough seas and some coastal erosion, possible heavy rainfall and gusty winds for that area. Currently, there are no warnings in effect for Western Australia, but residents should monitor their local forecasts.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>