Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Narelle form in Southern Indian Ocean

09.01.2013
The eighth tropical cyclone to form during the Southern Indian Ocean cyclone season formed from low pressure System 98S and became Tropical Cyclone Narelle.

NASA's TRMM satellite passed over System 98S and saw the hallmark "hot towers" that indicated the storm would soon likely intensify into Tropical Storm Narelle.


NASA's TRMM satellite passed over System 98S on Jan. 7 at 4:01 a.m. EST/US hours before it intensified into Tropical Storm Narelle. TRMM saw two bands of strong thunderstorms west and northwest of the center where heavy rainfall (red) was occurring.

Credit: NASA/SSAI, Hal Pierce

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over System 98S on Jan. 7 at 0901 UTC (4:01 a.m. EST/U.S.) hours before it intensified into Tropical Storm Narelle.

TRMM's Precipitation Radar instrument captured estimates of rainfall occurring in the storm. TRMM noticed two bands of strong thunderstorms west and northwest of the center of circulation where rainfall was occurring at more than 2 inches/50 mm per hour. Some of those thunderstorms were "hot towers," or large towering thunderstorms.

A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately nine miles (14.5 km) high in the tropics. The hot towers in System 98S were over 9.3 miles (15 km) high. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower. System 98S became Tropical Storm Narelle on Jan. 7 at 1800 UTC (1 p.m. EST/U.S.).

On Jan. 8, infrared satellite imagery showed that the low-level circulation center was consolidating (organizing). Just as the TRMM satellite showed improved convective (rising air that forms the thunderstorms that make up the tropical cyclone) banding in the western and northern quadrants of the storm on Jan. 7, infrared satellite data on Jan. 8 showed improved deep convective banding over the southeast quadrant of the system.

On Jan. 8 at 1500 UTC (10 a.m. EST/U.S.), Tropical cyclone Narelle had maximum sustained winds near 45 knots (51.7 mph/83.3 kph). The center of Narelle was located near 12.8 south latitude and 117.4 east longitude, about 605 miles north-northeast of Learmonth, Australia. Narelle was moving to the southwest at 9 knots (10.3 mph/16.6 kph).

Forecasters at the Joint Typhoon Warning Center (JTWC) take Narelle on a south-southwestward journey as a result of moving around the northwestern edge of a low-to-mid-level subtropical ridge (elongated area) of high pressure, located to the east and southeast of the system. That's because high pressure systems in the southern hemisphere rotate counter-clockwise.

JTWC forecasters expect that Narelle will continue to intensify and may reach wind speeds of 130 knots in three days as it nears Learmonth, Western Australia. The current forecast track, however, keeps the center at sea, but the eastern half of the storm is expected to impact the far western part of West Australia, including Learmonth. If the cyclone gets that strong, that would mean very rough seas and some coastal erosion, possible heavy rainfall and gusty winds for that area. Currently, there are no warnings in effect for Western Australia, but residents should monitor their local forecasts.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>