Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Ita over the Coral Sea

15.04.2014

Tropical Cyclone Ita made landfall in northeastern Queensland, Australia on April 11 as a powerful Category 4 hurricane on the Saffir-Simpson scale, moved south and re-emerged in the Coral Sea on April 14 where NASA's TRMM and NASA-NOAA's Suomi NPP Satellites captured imagery of the weakened storm.

The VIIRS instrument aboard NASA-NOAA's Suomi NPP satellite captured a visible look at Ita's elongating structure on April 14 at 4:12 UTC/12:12. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument collects visible and infrared imagery and global observations of land, atmosphere, cryosphere and oceans. Strong northwesterly vertical wind shear was evident because the bulk of the storm's clouds were pushed southeast of the center. The VIIRS image also revealed that Ita no longer maintained a rounded shape.


NASA's TRMM satellite rainfall data was combined with infrared data from Japan's MTSAT-2 to create this image of Tropical Cyclone Ita over the Coral Sea on April 14 at 1050 UTC. Heavy rainfall appears in red at 1.4 inches per hour.

Credit: NRL/NASA/JAXA

NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission (TRMM) satellite's Precipitation Radar instrument gathered rainfall data from Ita when it flew overhead on April 14. That rainfall data was combined with infrared data of Ita's clouds from Japan's MTSAT-2 satellite.

The image taken on April 14 at 1050 UTC/6:50 a.m. EDT showed rain fall rates of up to 1.4 inches/35.5 mm per hour falling southeast of Ita's elongated center.

After Tropical cyclone Ita made landfall on April 11, it continued tracking over land on the eastern Cape York Peninsula of Queensland, Australia where it weakened to a tropical storm. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite captured an infrared image of Ita on April 12 at 1225 UTC/8:25 a.m. EDT. The MODIS image showed very high, powerful thunderstorms with very cold cloud top temperatures were south of the center of circulation. The thick band of thunderstorms had cloud top temperatures that were as cold as -80F/-62.2C. Those thunderstorms had the potential for heavy rainfall.

According to the Brisbane Times, Ita did not cause any loss of life, but did damage agriculture. Ita reportedly destroyed banana crops and flattened cane fields. Flooding from heavy rainfall also cut off the Bruce Highway, Queensland's main highway.

On April 12 at 1200 UTC (8 a.m. EDT U.S. and April 13 at 2:00 a.m. local time) the Australian Bureau of Meteorology (ABM) noted that a Cyclone Warning remained in effect for coastal areas from Cape Tribulation to St. Lawrence. A Cyclone Watch remained in effect for coastal areas from St. Lawrence to Yeppoon. Heavy rainfall, flash flooding, gale-force winds and rough surf can be expected in the warning area. ABM warned that abnormally high tides were expected between Innisfail and Townsville.

On April 12, the Joint Typhoon Warning Center (JTWC) reported animated multispectral satellite imagery revealed that Ita's structure remained well-defined, even over land. Radar imagery from Cairns showed strong bands of thunderstorms along the eastern quadrant of the storm.

On April 12 at 0900 UTC/5 a.m. EDT, Tropical Storm Ita had maximum sustained winds near 50 knots/57.5 mph/92.6 kph. It was centered near 17.0 south latitude and 145.5 east longitude, about 31 nautical miles/35.7 miles/57.4 km west-northwest of Cairns, Queensland. Tropical cyclone Ita has tracked south-southeastward at 6 knots/6.9 miles/11.1 kph.

By April 13 at 12:06 UTC/7 a.m. local time Monday/8 p.m. EDT/U.S., Ita's maximum sustained winds dropped to 45 knots/51.7 mph/83.3 kph. Tropical Cyclone Ita was located off the central Queensland coast near latitude 22.0 south longitude 152.2 east, which is about 121.2 miles/195 km northeast of Yeppoon and 142.9 miles/230 km north northeast of Gladstone.

Satellite imagery showed that the bulk of the convection and thunderstorms associated with Ita were being blown to the south of the center because of strong northwesterly wind shear.

The JTWC's final warning on Ita was issued on April 14 at 0900 UTC/5 a.m. EDT when Ita was back over the Coral Sea. At that time, Ita's maximum sustained winds were down to 40 knots/46.0 mph/74.0 kph. It was centered near 23.7 north latitude and 155.1 east longitude, about 299.2 miles/481.5 km north-northeast of Brisbane, Queensland, Australia. Tropical Storm Ita was moving to the east-southeast at 23 knots/26.4 mph/42.6 kph. All warnings in Queensland were canceled.

JTWC forecasters using animated multispectral satellite imagery noted that Ita was quickly becoming extra-tropical. Ita was embedded in the mid-latitude westerly winds and as a result of that its circulation was starting to stretch out. Strong vertical wind shear was also pushing the strongest thunderstorms to the southeast of the center, and Ita had began taking on frontal characteristics.

JTWC forecasters expect that the vertical wind shear from the westerly winds will speed up the transition into an extra-tropical storm, and by April 15, Ita is expected to be fully extra-tropical.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

Further reports about: EDT NASA Radar atmosphere circulation clouds observations satellite

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>