Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Some Strength in Tropical Storm Patty's Brief Debut

15.10.2012
Tropical Depression 16 formed on Oct. 11 and by 5 p.m. EDT that same day, it strengthened into Tropical Storm Patty. NASA's TRMM and Terra satellite's captured imagery on Patty's rainfall intensity and cloud heights, both of which showed strong, high thunderstorms around the center of circulation.

On Oct. 11 at 11 a.m. EDT the National Hurricane Center (NHC) announced the formation of tropical depression sixteen (TD16) northeast of the Bahamas. Earlier, at 0422 UTC (12:22 a.m. EDT), the Tropical Rainfall Measuring Mission (TRMM) satellite had a look at the disturbed weather associated with the formation of TD16. TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) indicated that surface precipitation was falling at a rate of up to 20mm per hour (~0.8 inches per hour) in the northwestern part of this small area of low pressure.


This visible image of Tropical Storm Patty was taken by the MODIS instrument aboard NASA's Terra satellite on Oct. 11 at 1515 UTC (11:15 a.m. EDT). Strongest storms around the center cast shadows on lower surrounding thunderstorms.
Credit: NASA Goddard MODIS Rapid Response Team

TRMM precipitation radar data was used to create a 3-D view of the storm that showed that a few of the most powerful convective storms called "hot towers" in the developing tropical depression were reaching altitudes of over 16km (~9.9 miles). NASA research has shown that whenever hot towering thunderstorms are spotted within a tropical cyclone, the storm intensifies within about six hours, and the low pressure area did, becoming Tropical Depression 16. It also intensified further into Tropical Storm Patty by 5 p.m. EDT that day.

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite also captured a visible image of Tropical Depression 16 on Oct. 11. Terra passed over Tropical Depression 16 at 1515 UTC (11:15 a.m. EDT) just six hours before it strengthened into Tropical Storm Patty. Strongest storms around the center cast shadows on lower surrounding thunderstorms indicating that the storm continued to generate a large mass of deep convection.

On Friday, Oct. 12, Patty was drifting at 3 mph (6 kph) south-southwestward near the Bahamas and was already weakening. Tropical Storm Patty had maximum sustained winds near 40 mph (65 kph). Patty's center was located near 25.1 North latitude and 72.5 West longitude, about 230 miles (375 km) east-northeast of the central Bahamas. The National Hurricane Center (NHC) expects Patty to move slowly to the south-southwest or southwest and speed up on Sunday, Oct. 14 while continuing to weaken. In fact, the NHC noted that Patty could become a remnant low pressure area on Saturday, Oct. 13.

Dry and more stable air wrapping around Tropical Storm Patty is the factor that is expected to weaken the storm. The NHC forecasters noted that a low-level ridge (elongated area) of high pressure is building up (strengthening) over the western Atlantic Ocean, and that's going to increase the winds shear from the southwest over the weekend of Oct. 13 and 14, so Patty is likely going to be blown apart in the next day or two.

Text credit: Rob Gutr/Hal Pierceo
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro/Hal Pierceo | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Patty.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>