Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees remnants of Tropical Storm Oswald still strong

25.01.2013
Infrared imagery from NASA's Aqua satellite revealed that a band of thunderstorms on the eastern side of Tropical Storm Oswald's remnants still contained some punch. Oswald's remnants have triggered severe weather warnings in parts of Queensland, Australia.

When NASA's Aqua satellite passed over the eastern side of the remnants of Tropical Cyclone Oswald the Atmospheric Infrared Sounder (AIRS) instrument captured an infrared image of a powerful band of thunderstorms over the Coral Sea.


When NASA's Aqua satellite passed over the eastern side of the remnants of Tropical Cyclone Oswald the Atmospheric Infrared Sounder (AIRS) instrument captured an infrared image of a powerful band of thunderstorms over the Coral Sea. The band of thunderstorms east of Oswald's center showed some strong convection and cold cloud top temperatures as cold as -63 Fahrenheit (-52 Celsius). Those cold temperatures are indicative of high, powerful thunderstorms capable of dropping heavy rainfall.

Credit: NASA JPL, Ed Olsen

The band of thunderstorms east of Oswald's center showed some strong convection and cold cloud top temperatures as cold as -63 Fahrenheit (-52 Celsius). Those cold temperatures are indicative of high, powerful thunderstorms capable of dropping heavy rainfall.

Other satellite imagery indicated that Oswald's low-level circulation center had become well-defined, and bands of thunderstorms continued to wrap into it from the Coral Sea. The center of the low was over land and was out of the range of the satellite overpass, but also contained strong storms. Those storms are responsible for severe weather warnings issued on Jan. 24 by the Australian Bureau of Meteorology (ABM).

On Jan. 24 at 0600 UTC (1 a.m. EST/U.S/4 p.m. local time, Queensland.) the center of the remnant low pressure area was located near 19.7 south latitude and 146.8 east longitude, about 30 miles south of Townsville, Australia.

At 1:15 a.m. local time (Queensland) on Friday, Jan. 25 (1515 UTC or 10:15 a.m. EST/U.S. Jan. 24), the ABM issued a severe weather warning that included destructive winds and heavy rainfall for Capricornia, Wide Bay and Burnett and parts of the Central Coast and Whitsundays, Central Highlands and Coalfields and Southeast Coast Forecast Districts.

ABM's bulletin noted that ex-Tropical Cyclone Oswald was located over land, approximately 93.2 miles (150 km) west-northwest of Mackay and moving south-southeast at about 12.4 mph (20 kph). ABM noted that strong winds gusting to 77.7 mph (125 kph) are possible about the Central Coast-Whitsundays and Capricornia districts, while wind gusts to 56 mph (90 kph) are possible over the Wide Bay and Burnett district, including areas between Agnes Water and Sandy Cape.

Oswald's remnants continue to generate heavy rainfall, and a warning for flash flooding is also in effect. At 1 a.m. local time (Queensland) on Friday, Jan. 25 (1500 UTC or 10 a.m. EST/U.S. Jan. 24), the Yeppoon area reported almost 8 inches (198 mm) of rain had fallen since the previous day, and severe flash flooding was occurring. For updated watches and warnings from ABM, visit: http://www.bom.gov.au/qld/warnings/

The Joint Typhoon Warning Center noted that Oswald has a medium chance for regaining tropical depression status over the next day.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.bom.gov.au/qld/warnings/

More articles from Earth Sciences:

nachricht NASA sees development of Tropical Storm 11P in Southwestern Pacific
11.02.2016 | NASA/Goddard Space Flight Center

nachricht Southwest sliding into a drier climate
11.02.2016 | National Center for Atmospheric Research/University Corporation for Atmospheric Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>