Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA sees intensifying tropical cyclone moving over Samoan Islands

NASA satellites have been monitoring Tropical Cyclone Evan and providing data to forecasters who expected the storm to intensify. On Dec. 13, Evan had grown from a tropical storm into a cyclone as NASA satellites observed cloud formation, height and temperature, and rainfall rates.

The Tropical Rainfall Measuring Mission (TRMM) satellite passed above intensifying tropical storm Evan in the South Pacific Ocean on Dec. 11, 2012 at 1759 UTC (12:59 p.m. EST/U.S.). An analysis of Evan's rainfall from TRMM's Precipitation Radar (PR) and Microwave Imager (TMI) showed that Evan already had an eye-like structure at the time of that TRMM orbit. Evan would later develop an eye on Dec. 13.

The AIRS instrument aboard NASA's Aqua satellite captured this infrared image of Tropical Cyclone Evan over the Samoa Islands on Dec. 13 at 0059 UTC. Evan's maximum sustained winds had increased to 90 knots (103 mph/166.7 kph) at the time of this image. The purple rounded area is Evan's center of circulation and is populated by strong thunderstorms that reach high into the troposphere where temperatures are as cold as -63 Fahrenheit (-52 Celsius). Those areas shaded in purple also indicate heavy rainfall.

Credit: NASA/JPL, Ed Olsen

TRMM's 3-D Precipitation Radar (PR) data captured on Dec. 11 were used to measure the heights of Evan's storm tops. It found that the tallest thunderstorms shown around Evan's center of circulation reached 16.5 km (10.25 miles) indicating powerful storms and heavy rainmakers. Other thunderstorm cloud tops nearby were measured at 14.75 km (9.17 miles).

NASA's Aqua satellite passed over Tropical Cyclone Evan after it had attained cyclone status on Dec. 13 and two instruments provided insight into what was happening with the storm.

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Aqua satellite captured a visible image of Tropical Cyclone Evan when it was directly over the Samoa Islands on Dec. 13 at 0105 UTC. Evan's maximum sustained winds had increased to 90 knots (103 mph/166.7 kph).

The other instrument aboard Aqua that captured data from Evan was the Atmospheric Infrared Sounder (AIRS) instrument. AIRS captured an infrared image of Tropical Cyclone Evan at 0059 UTC. The infrared image showed a compact, circular area of strong thunderstorms around Evan's center that reached high into the troposphere where temperatures are as cold as -63 Fahrenheit (-52 Celsius). Those areas also indicated heavy rainfall. Infrared imagery also showed that Evan's eye was about 6 nautical miles wide. Imagery also showed tightly-curved deep convective (rising air that creates the storms that make up the cyclone) banding of thunderstorms were wrapping into the center.

By 1500 UTC (10 a.m. EST) on Dec. 13, Evan's maximum sustained winds had increased to 90 knots (103 mph/166.7 kph). Evan was centered just 65 nautical miles (74.8 miles/120.4 km) west-northwest of Pago Pago, American Samoa, near 13.7 south latitude and 171.7 west longitude. Evan was crawling to the northwest at 2 knots (2.3 mph/3.7 kph).

Evan is expected to track to the west and continue strengthening over the next couple of days.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>