Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees important cloud-top temperatures as Tropical Storm Malakas heads for Iwo To

24.09.2010
NASA's Aqua satellite has peered into the cloud tops of Tropical Storm Malakas and derived just how cold they really are, giving an indication to forecasters of the strength of the storm.

The Atmospheric Infrared Sounder instrument, known as AIRS has the ability to determine cloud top and sea surface temperatures from its position in space aboard NASA's Aqua satellite. Cloud top temperatures help forecasters know if a storm is powering up or powering down.

When cloud top temperatures get colder it means that they're getting higher into the atmosphere which means the "uplift" of warm, moist air is stronger and it will form stronger thunderstorms (that power a tropical cyclone). When cloud-top temperatures warm up it means that the cloud tops are lower than they were before, indicating that the storm is weakening.

When the Aqua satellite passed over Malakas from space on Sept. 23 at 0405 UTC (12:05 a.m. EDT) the AIRS instrument took the temperature of the cloud tops in the storm and found them to be as cold as or colder than -63 Fahrenheit throughout a very large area within Tropical Storm Malakas, indicating the storm had a good amount of energy powering it. Infrared imagery also showed an eye with thunderstorms banding around it (circling it), and convection (and thunderstorms) re-building over the system, which indicates strengthening.

The Joint Typhoon Warning Center is the organization that forecasts tropical cyclones in the northwestern Pacific Ocean, and they've been right on track with Tropical Storm Malakas' forecast, much to the disappointment of the residents of the Japanese island of Iwo To. That's where Malakas' center is expected to pass very closely near later tonight (Eastern Time/U.S.).

On Sept. 23 at 1500 UTC (11 a.m. EDT/midnight Sept. 24 local time at Iwo To), Malakas had maximum sustained winds near 69 mph (4 mph under typhoon strength). It was moving north at 14 mph toward Iwo To, Japan. It was located about 170 nautical miles south of the island, near 22.6 North and 140.9 East. Malakas is kicking up 27-foot high seas as it tracks north.

The center of Malakas is forecast to be closest to the island of Iwo To at 0000 UTC (about 9 a.m. Local time) on Sept. 24 (8 p.m. EDT on Sept. 23).

Rob Gutro | EurekAlert!
Further information:
http://www.Nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>