Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Hurricane Julio Organize and Emit a Gamma-Ray Flash

08.08.2014

NASA's Fermi and Aqua satellites captured two different views of bursts of strength show by Hurricane Julio as it intensified. NASA's Fermi satellite saw a gamma-ray flash from Julio, while NASA's Aqua satellite saw Julio become more structurally organized as a hurricane.

Fermi Spots Julio's Gamma-Ray Flash


On August 6 at 22:30 UTC (6:30 p.m. EDT) NASA's Aqua satellite passed over Hurricanes Iselle (right) and Julio (left) approaching Hawaii. This image was created using three satellite passes.

Image Credit: NASA Goddard MODIS Rapid Response Team


A red cross marks Fermi's position at the time it detected a TGF above Tropical Storm Julio on Aug. 4. Green dots show lightning locations from WWLLN data 10 minutes before and after the TGF (magenta). Background: A GOES 15 image of Julio taken 19 minutes before the flash.

Image Credit: Michael Briggs/UAH and WWLLN; image: NASA/NOAA GOES Project

Shortly after 4:19 a.m. EDT on Monday, Aug. 4, NASA's Fermi Gamma-ray Space Telescope showed that Julio packs a wallop of a very different kind when its Gamma-ray Burst Monitor (GBM) detected a quick flash of high-energy light.

This type of outburst is known as a terrestrial gamma-ray flash (TGF). Produced by the powerful electric fields in thunderstorms, TGFs last only a few thousandths of a second but emit gamma rays that make up the highest-energy naturally-occurring light on Earth. Scientists estimate that, on average, about 1,100 TGFs occur each day.

... more about:
»EDT »Fermi »Flash »Flight »GBM »Hawaii »Hurricane »NASA »NHC »Space »hurricane »satellite »tropical

Fermi's GBM instrument can detect TGFs within about 500 miles (800 km) of the spacecraft, which is too imprecise to definitively associate these flashes with specific storms. In 2012, however, Fermi scientists used lightning location data to show that TGFs also emit strong radio bursts, signals that can pinpoint the flashes with much greater precision.

Lightning emits a broad range of very low frequency (VLF) radio waves, often heard as pop-and-crackle static on AM radio broadcasts. The World Wide Lightning Location Network (WWLLN), a research collaboration operated by the University of Washington in Seattle, uses these radio signals to pinpoint lightning discharges anywhere on the globe to within about 6 miles (10 km).

According to WWLLN data, a lightning-like radio burst occurred near Fermi just 1.89 milliseconds after the spacecraft captured the gamma-ray flash above Julio, then a tropical storm. The timing is so close that the two signals must be related. "As far as I know, a TGF from a tropical storm has never been reported before," said Michael Briggs, a member of the GBM team at the University of Alabama in Huntsville.

Aqua Spots a More Organized Storm 

Two days after Julio emitted a gamma-ray flash, NASA's Aqua satellite passed overhead and captured a visible image of the storm that showed it had become more structurally organized.

On August 6 at 22:30 UTC (6:30 p.m. EDT) NASA's Aqua satellite passed over Hurricanes Iselle and Julio approaching Hawaii. The visible image was captured from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument. The hurricane appeared more compact and symmetric. By August 7, the National Hurricane Center noted that Julio's eye had cleared of clouds.

At 5 a.m. EDT (0900 UTC) on August 7, the National Hurricane Center (NHC) noted that Julio's maximum sustained winds had increased to near 100 mph (155 kph). The
NHC noted that some additional strengthening is possible before the storm begins gradually weakening at night and over the weekend of August 9 and 10.

The eye of Hurricane Julio was located near latitude 16.8 north and longitude 134.9 west, about 1,340 miles (2,155 km east of Hilo, Hawaii. Julio is moving toward the west-northwest near 17 mph (28 kph) and this general motion is expected to continue for the next 48 hours. The estimated minimum central pressure is 976 millibars.

The NHC intensity forecast calls for Julio to remain at hurricane strength for the next 2-3 days (through August 9 or 10). Only gradual weakening is anticipated at the end of the forecast period since Julio will be moving over increasingly warmer waters to the north and west of Hawaii.

Related Links:

Fermi Improves its Vision for Thunderstorm Gamma-Ray Flashes (12.06.2012) - http://www.nasa.gov/mission_pages/GLAST/news/vision-improve.html
NASA's Fermi Catches Thunderstorms Hurling Antimatter into Space (01.10.2011) - http://www.nasa.gov/mission_pages/GLAST/news/fermi-thunderstorms.html

Text credit:  Francis Reddy / Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/julio/#.U-Ox8mO-5yw

Further reports about: EDT Fermi Flash Flight GBM Hawaii Hurricane NASA NHC Space hurricane satellite tropical

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>