Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Heavy Rains and Hot Towers in Hurricane Manuel

20.09.2013
NASA's TRMM satellite passed over Manuel on Sept. 19 at 0116 UTC and measured its rainfall as it was strengthening into a hurricane.

TRMM noticed heavy rainfall and some hot towering thunderstorms, which were indications that the storm was intensifying. NASA's Aqua satellite captured an infrared image that showed Manuel was making landfall during the morning of Sept. 19, and at 11 a.m. EDT, Hurricane Manuel officially made landfall near Culican, Mexico.


NASA's TRMM satellite flew over Tropical Storm Manuel at 9:16 p.m. EDT on Sept. 18, and it observed areas of heavy rainfall (red)around the storm's center and in a band of thunderstorms north of the center. TRMM also observed hot towers, or towering thunderstorms that were over 16 km/9.9 miles high.

Image Credit: NASA/SSAI, Hal Pierce

A Hurricane Warning is in effect for La Cruz to Topolobampo and a Tropical Storm Watch is in effect from north of Topolobampo to Huatabampito.

When NASA's Tropical Rainfall Measuring Mission satellite known as TRMM flew over Tropical Storm Manuel on Sept. 19 at 0116 UTC/9:16 p.m. EDT on Sept. 18, it observed areas of heavy rainfall around the storm's center and in a band of thunderstorms north of the center. TRMM also observed hot towers, or towering thunderstorms that were over 16 km/9.9 miles high.

A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately 9 miles/14.5 km high in the tropics. The hot towers in Manuel were over 9.9 miles/16 km high. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower. When TRMM passed over Manuel and captured the hot towers, it was just about one hour after the National Hurricane Center classified the storm as a hurricane.

The heavy rain observed by TRMM was an indication of the rainfall that Manuel is expected to bring to northwestern Mexico. According to the National Hurricane Center (NHC), Manuel is expected to produce 8 to 12 inches of rain over the Mexican state of Sinaloa with isolated maximum amounts of 20 inches possible. An additional 1 to 2 inches of rain is also possible over the southern portion of the Baja California peninsula and the state of Nayarit.

Storm surge with water levels as much as 2 to 4 feet above normal tide levels are possible along the coast near and to the south of where the center makes landfall, NHC noted. The surge will be accompanied by large and destructive waves. NHC noted that tropical storm conditions are possible in the northern portion of Sinaloa and extreme southern Sonora within the tropical storm watch area.

On Sept. 19 at 5:11 a.m. EDT, the Atmospheric Infrared Sounder called AIRS that flies aboard NASA's Aqua satellite captured an infrared image of Hurricane Manuel's very cold cloud tops and powerful thunderstorms as it was making landfall. Some cloud top temperatures exceeded -63F/-52C indicating they were high in the troposphere and had the potential to drop heavy rainfall.

At 11 a.m. EDT on Sept. 19, Manuel's maximum sustained winds were near 75 mph/120 kph when its center came ashore in Culiacan, Mexico. It was near 25.0 north and 107.8 west. Manuel is moving north near 3 mph/ 6 kph and is expected to turn to the north-northeast is expected later today. The NHC expects Manuel to weaken to a tropical depression late tonight or early Friday, Sept. 20, finally dissipating over the mountains of Mexico late on Sept. 20.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/13e-eastern-pacific/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>