Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Heavy Rains and Hot Towers in Hurricane Manuel

20.09.2013
NASA's TRMM satellite passed over Manuel on Sept. 19 at 0116 UTC and measured its rainfall as it was strengthening into a hurricane.

TRMM noticed heavy rainfall and some hot towering thunderstorms, which were indications that the storm was intensifying. NASA's Aqua satellite captured an infrared image that showed Manuel was making landfall during the morning of Sept. 19, and at 11 a.m. EDT, Hurricane Manuel officially made landfall near Culican, Mexico.


NASA's TRMM satellite flew over Tropical Storm Manuel at 9:16 p.m. EDT on Sept. 18, and it observed areas of heavy rainfall (red)around the storm's center and in a band of thunderstorms north of the center. TRMM also observed hot towers, or towering thunderstorms that were over 16 km/9.9 miles high.

Image Credit: NASA/SSAI, Hal Pierce

A Hurricane Warning is in effect for La Cruz to Topolobampo and a Tropical Storm Watch is in effect from north of Topolobampo to Huatabampito.

When NASA's Tropical Rainfall Measuring Mission satellite known as TRMM flew over Tropical Storm Manuel on Sept. 19 at 0116 UTC/9:16 p.m. EDT on Sept. 18, it observed areas of heavy rainfall around the storm's center and in a band of thunderstorms north of the center. TRMM also observed hot towers, or towering thunderstorms that were over 16 km/9.9 miles high.

A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately 9 miles/14.5 km high in the tropics. The hot towers in Manuel were over 9.9 miles/16 km high. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower. When TRMM passed over Manuel and captured the hot towers, it was just about one hour after the National Hurricane Center classified the storm as a hurricane.

The heavy rain observed by TRMM was an indication of the rainfall that Manuel is expected to bring to northwestern Mexico. According to the National Hurricane Center (NHC), Manuel is expected to produce 8 to 12 inches of rain over the Mexican state of Sinaloa with isolated maximum amounts of 20 inches possible. An additional 1 to 2 inches of rain is also possible over the southern portion of the Baja California peninsula and the state of Nayarit.

Storm surge with water levels as much as 2 to 4 feet above normal tide levels are possible along the coast near and to the south of where the center makes landfall, NHC noted. The surge will be accompanied by large and destructive waves. NHC noted that tropical storm conditions are possible in the northern portion of Sinaloa and extreme southern Sonora within the tropical storm watch area.

On Sept. 19 at 5:11 a.m. EDT, the Atmospheric Infrared Sounder called AIRS that flies aboard NASA's Aqua satellite captured an infrared image of Hurricane Manuel's very cold cloud tops and powerful thunderstorms as it was making landfall. Some cloud top temperatures exceeded -63F/-52C indicating they were high in the troposphere and had the potential to drop heavy rainfall.

At 11 a.m. EDT on Sept. 19, Manuel's maximum sustained winds were near 75 mph/120 kph when its center came ashore in Culiacan, Mexico. It was near 25.0 north and 107.8 west. Manuel is moving north near 3 mph/ 6 kph and is expected to turn to the north-northeast is expected later today. The NHC expects Manuel to weaken to a tropical depression late tonight or early Friday, Sept. 20, finally dissipating over the mountains of Mexico late on Sept. 20.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/13e-eastern-pacific/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>