Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Heavy Rains and Hot Towers in Hurricane Manuel

20.09.2013
NASA's TRMM satellite passed over Manuel on Sept. 19 at 0116 UTC and measured its rainfall as it was strengthening into a hurricane.

TRMM noticed heavy rainfall and some hot towering thunderstorms, which were indications that the storm was intensifying. NASA's Aqua satellite captured an infrared image that showed Manuel was making landfall during the morning of Sept. 19, and at 11 a.m. EDT, Hurricane Manuel officially made landfall near Culican, Mexico.


NASA's TRMM satellite flew over Tropical Storm Manuel at 9:16 p.m. EDT on Sept. 18, and it observed areas of heavy rainfall (red)around the storm's center and in a band of thunderstorms north of the center. TRMM also observed hot towers, or towering thunderstorms that were over 16 km/9.9 miles high.

Image Credit: NASA/SSAI, Hal Pierce

A Hurricane Warning is in effect for La Cruz to Topolobampo and a Tropical Storm Watch is in effect from north of Topolobampo to Huatabampito.

When NASA's Tropical Rainfall Measuring Mission satellite known as TRMM flew over Tropical Storm Manuel on Sept. 19 at 0116 UTC/9:16 p.m. EDT on Sept. 18, it observed areas of heavy rainfall around the storm's center and in a band of thunderstorms north of the center. TRMM also observed hot towers, or towering thunderstorms that were over 16 km/9.9 miles high.

A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately 9 miles/14.5 km high in the tropics. The hot towers in Manuel were over 9.9 miles/16 km high. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower. When TRMM passed over Manuel and captured the hot towers, it was just about one hour after the National Hurricane Center classified the storm as a hurricane.

The heavy rain observed by TRMM was an indication of the rainfall that Manuel is expected to bring to northwestern Mexico. According to the National Hurricane Center (NHC), Manuel is expected to produce 8 to 12 inches of rain over the Mexican state of Sinaloa with isolated maximum amounts of 20 inches possible. An additional 1 to 2 inches of rain is also possible over the southern portion of the Baja California peninsula and the state of Nayarit.

Storm surge with water levels as much as 2 to 4 feet above normal tide levels are possible along the coast near and to the south of where the center makes landfall, NHC noted. The surge will be accompanied by large and destructive waves. NHC noted that tropical storm conditions are possible in the northern portion of Sinaloa and extreme southern Sonora within the tropical storm watch area.

On Sept. 19 at 5:11 a.m. EDT, the Atmospheric Infrared Sounder called AIRS that flies aboard NASA's Aqua satellite captured an infrared image of Hurricane Manuel's very cold cloud tops and powerful thunderstorms as it was making landfall. Some cloud top temperatures exceeded -63F/-52C indicating they were high in the troposphere and had the potential to drop heavy rainfall.

At 11 a.m. EDT on Sept. 19, Manuel's maximum sustained winds were near 75 mph/120 kph when its center came ashore in Culiacan, Mexico. It was near 25.0 north and 107.8 west. Manuel is moving north near 3 mph/ 6 kph and is expected to turn to the north-northeast is expected later today. The NHC expects Manuel to weaken to a tropical depression late tonight or early Friday, Sept. 20, finally dissipating over the mountains of Mexico late on Sept. 20.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/13e-eastern-pacific/

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>