Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Heavy Rainfall Around Compact Typhoon Guchol's Center

18.06.2012
Typhoon Guchol has spawned alerts in the Philippines as it is forecast to skirt the eastern part of Luzon this weekend, and will likely spawn warnings in Okinawa and western Japan over the next couple of days as it tracks in that direction.

NASA's TRMM satellite analyzed rainfall within the storm and found heavy rainfall around the center of circulation, falling at a rate of over 2 inches/50 mm per hour and there were hot towering thunderstorms.


This image from NASA's TRMM satellite shows Typhoon Guchol's rainfall intensity on June 15, 2012. The yellow, green and blue areas indicate light-to-moderate rainfall between 20 and 40 millimeters (.78 to 1.57 inches) per hour. The red area is considered heavy rainfall at 2 inches/50 mm per hour and is occurring around the center of circulation in the area where "hot towers" were noted on satellite imagery.
Credit: NASA/SSAI, Hal Pierce

The Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) have issued a Typhoon Warning for shipping interests today, June 15, 2012.

That warning can be found at:
http://www.pagasa.dost.gov.ph/
wb/tcws_files.html
For more updates from PAGASA,
visit:
http://www.pagasa.dost.gov.ph/wb/tcupdate.shtml
The Tropical Rainfall Measuring Mission satellite called TRMM measures how much rain can fall per hour in storms. On June 15, TRMM analyzed the rainfall rate within Typhoon Guchol, also known in the Philippines as "Typhoon Butchoy." A rainfall analysis was made at NASA's Goddard Space Flight Center in Greenbelt, Md. that used data from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments. That analysis was overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS) instrument and showed heavy convective storms were dropping intense rainfall of over 50mm/hr (~2 inches) around the storm's center. The areas of that heavy rainfall were occurring from "Hot Towers," or towering thunderstorms. TRMM Precipitation Radar showed those hot towers were higher than 15km (~9.3 miles). The coldest cloud top temperatures were near -74 Celsius (-101 Fahrenheit)!

On June 15, 2012 at 1200 UTC (8 a.m. EDT) Guchol's (Butchoy) maximum sustained winds were near 90 knots (103.6 mph/166.7 kph). The strong winds were creating very rough seas and high waves in the Philippine Sea, where wave heights were near 33 feet (10.6 meters). Guchol was about 660 miles east-southeast of Manila, Philippines, near 11.6 North and 130.6 East. It was moving to the northwest at 7 knots (8 mph/13 kph).

Guchol is still a small system, very compact and strong. Satellite imagery enabled forecasters to estimate that it is about 110 nautical miles in diameter. The eye is currently cloud-filled on satellite imagery.

Forecasters at the Joint Typhoon Warning Center expect Guchol to continue intensifying as it tracks toward Okinawa and then re-curve toward western Japan over the next several days. Residents along the path of the storm should prepare for very rough surf, heavy rainfall and typhoon conditions over the weekend.

Text Credit: Rob Gutro
NASA Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Guchol.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>