Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Heavy Rainfall Around Compact Typhoon Guchol's Center

18.06.2012
Typhoon Guchol has spawned alerts in the Philippines as it is forecast to skirt the eastern part of Luzon this weekend, and will likely spawn warnings in Okinawa and western Japan over the next couple of days as it tracks in that direction.

NASA's TRMM satellite analyzed rainfall within the storm and found heavy rainfall around the center of circulation, falling at a rate of over 2 inches/50 mm per hour and there were hot towering thunderstorms.


This image from NASA's TRMM satellite shows Typhoon Guchol's rainfall intensity on June 15, 2012. The yellow, green and blue areas indicate light-to-moderate rainfall between 20 and 40 millimeters (.78 to 1.57 inches) per hour. The red area is considered heavy rainfall at 2 inches/50 mm per hour and is occurring around the center of circulation in the area where "hot towers" were noted on satellite imagery.
Credit: NASA/SSAI, Hal Pierce

The Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) have issued a Typhoon Warning for shipping interests today, June 15, 2012.

That warning can be found at:
http://www.pagasa.dost.gov.ph/
wb/tcws_files.html
For more updates from PAGASA,
visit:
http://www.pagasa.dost.gov.ph/wb/tcupdate.shtml
The Tropical Rainfall Measuring Mission satellite called TRMM measures how much rain can fall per hour in storms. On June 15, TRMM analyzed the rainfall rate within Typhoon Guchol, also known in the Philippines as "Typhoon Butchoy." A rainfall analysis was made at NASA's Goddard Space Flight Center in Greenbelt, Md. that used data from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments. That analysis was overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS) instrument and showed heavy convective storms were dropping intense rainfall of over 50mm/hr (~2 inches) around the storm's center. The areas of that heavy rainfall were occurring from "Hot Towers," or towering thunderstorms. TRMM Precipitation Radar showed those hot towers were higher than 15km (~9.3 miles). The coldest cloud top temperatures were near -74 Celsius (-101 Fahrenheit)!

On June 15, 2012 at 1200 UTC (8 a.m. EDT) Guchol's (Butchoy) maximum sustained winds were near 90 knots (103.6 mph/166.7 kph). The strong winds were creating very rough seas and high waves in the Philippine Sea, where wave heights were near 33 feet (10.6 meters). Guchol was about 660 miles east-southeast of Manila, Philippines, near 11.6 North and 130.6 East. It was moving to the northwest at 7 knots (8 mph/13 kph).

Guchol is still a small system, very compact and strong. Satellite imagery enabled forecasters to estimate that it is about 110 nautical miles in diameter. The eye is currently cloud-filled on satellite imagery.

Forecasters at the Joint Typhoon Warning Center expect Guchol to continue intensifying as it tracks toward Okinawa and then re-curve toward western Japan over the next several days. Residents along the path of the storm should prepare for very rough surf, heavy rainfall and typhoon conditions over the weekend.

Text Credit: Rob Gutro
NASA Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Guchol.html

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>