Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Very Heavy Rain in Super Typhoon Jelawat and Heavy Rain Pushed from Ewinar's Center

27.09.2012
NASA's TRMM satellite measured the rainfall of Super Typhoon Jelawat and Tropical Storm Ewiniar as they continue moving through the western North Pacific Ocean.

Super Typhoon Jelawat had super rainfall rates around its eye, while nearby Tropical Storm Ewinar's heaviest rainfall was pushed north and west of its center because of wind shear.


The TRMM satellite captured rainfall rates from Typhoon Jelawat and Tropical Storm Ewiniar on Sept. 24, 2012 at 1610 UTC (12:10 p.m. EDT). TRMM data showed that heaviest rainfall (purple) falling at a rate of around 80 mm/3.1 inches per hour around the tight eye of Typhoon Jelawat, while Ewiniar had small areas of moderate to heavy rainfall northeast of the center of circulation. Heavy rainfall appears in red, falling at 2 inches/50 mm per hour. Light to moderate rainfall is depicted in blue and green (falling at a rate between .78 to 1.57 inches (20 to 40 mm) per hour.
Credit: SSAI/NASA, Hal Pierce

Jelawat was intensifying and close to a category five super typhoon when NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed above on September 24, 2012 at 1611 UTC (12:11 p.m.). A 3-D image was created using TRMM's Precipitation Radar (PR) instrument that showed hot towering thunderstorms around the tight center of circulation.

TRMM data showed that heaviest rainfall in Super Typhoon Jelawat was falling at a rate of around 3.1 inches (80 mm) per hour around the storm's tight eye. The eyewall replacement was completed today, Sept. 26, and Jelawat's clear eye is now 25 nautical miles (28.7 miles/46.3 km) wide, 8 nautical miles (9.2 miles/14.8 km) wider than it was on Sept. 25.

On Wednesday, Sept. 26, Jelawat was located 495 nautical miles (569 miles/917 km) south-southwest of Kadena Air Base, Okinawa, Japan, and has tracked northwestward at 5 knots (5.7 mph/9.3 kmh). Jelawat is forecast to continue tracking northwest and then make a turn to the northeast on Sept. 28 when it runs into an elongated area of low pressure moving east from the Yellow Sea. That turn puts Kadena Air Base, Okinawa, Japan near the center of the forecast track from the Joint Typhoon Warning Center.

NASA's Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite captured this infrared image of Super Typhoon Jelawat on Sept. 25 at 1:23 p.m. EDT. The clear 28 mile wide eye is seen surrounded by strong thunderstorms with very cold cloud top temperatures exceeding -63F/-52C.

East of Jelawat, Tropical Storm Ewiniar is spinning in the western North Pacific Ocean. On Sept. 24, the TRMM satellite noticed that Tropical Storm Ewiniar had small areas of moderate to heavy rainfall northeast of the center of circulation. That rainfall was falling at 2 inches (50 mm) per hour. Rainfall had become weaker during the early part of Sept. 26 as wind shear continues to batter the storm from the southwest. On Sept. 26, Ewiniar's maximum sustained winds were near 45 knots (52 mph/83.3 kmh). Ewiniar was located 485 nautical miles (558 miles/898 km) south-southeast of Yokosuka, Japan, has tracked north-northeastward at 13 knots (15 mph/24 kmh). Ewiniar is forecast to turn more northward over the next day, and then turn to the northeast.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Ewiniar.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>