Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Sees Very Heavy Rain in Super Typhoon Jelawat and Heavy Rain Pushed from Ewinar's Center

NASA's TRMM satellite measured the rainfall of Super Typhoon Jelawat and Tropical Storm Ewiniar as they continue moving through the western North Pacific Ocean.

Super Typhoon Jelawat had super rainfall rates around its eye, while nearby Tropical Storm Ewinar's heaviest rainfall was pushed north and west of its center because of wind shear.

The TRMM satellite captured rainfall rates from Typhoon Jelawat and Tropical Storm Ewiniar on Sept. 24, 2012 at 1610 UTC (12:10 p.m. EDT). TRMM data showed that heaviest rainfall (purple) falling at a rate of around 80 mm/3.1 inches per hour around the tight eye of Typhoon Jelawat, while Ewiniar had small areas of moderate to heavy rainfall northeast of the center of circulation. Heavy rainfall appears in red, falling at 2 inches/50 mm per hour. Light to moderate rainfall is depicted in blue and green (falling at a rate between .78 to 1.57 inches (20 to 40 mm) per hour.
Credit: SSAI/NASA, Hal Pierce

Jelawat was intensifying and close to a category five super typhoon when NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed above on September 24, 2012 at 1611 UTC (12:11 p.m.). A 3-D image was created using TRMM's Precipitation Radar (PR) instrument that showed hot towering thunderstorms around the tight center of circulation.

TRMM data showed that heaviest rainfall in Super Typhoon Jelawat was falling at a rate of around 3.1 inches (80 mm) per hour around the storm's tight eye. The eyewall replacement was completed today, Sept. 26, and Jelawat's clear eye is now 25 nautical miles (28.7 miles/46.3 km) wide, 8 nautical miles (9.2 miles/14.8 km) wider than it was on Sept. 25.

On Wednesday, Sept. 26, Jelawat was located 495 nautical miles (569 miles/917 km) south-southwest of Kadena Air Base, Okinawa, Japan, and has tracked northwestward at 5 knots (5.7 mph/9.3 kmh). Jelawat is forecast to continue tracking northwest and then make a turn to the northeast on Sept. 28 when it runs into an elongated area of low pressure moving east from the Yellow Sea. That turn puts Kadena Air Base, Okinawa, Japan near the center of the forecast track from the Joint Typhoon Warning Center.

NASA's Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite captured this infrared image of Super Typhoon Jelawat on Sept. 25 at 1:23 p.m. EDT. The clear 28 mile wide eye is seen surrounded by strong thunderstorms with very cold cloud top temperatures exceeding -63F/-52C.

East of Jelawat, Tropical Storm Ewiniar is spinning in the western North Pacific Ocean. On Sept. 24, the TRMM satellite noticed that Tropical Storm Ewiniar had small areas of moderate to heavy rainfall northeast of the center of circulation. That rainfall was falling at 2 inches (50 mm) per hour. Rainfall had become weaker during the early part of Sept. 26 as wind shear continues to batter the storm from the southwest. On Sept. 26, Ewiniar's maximum sustained winds were near 45 knots (52 mph/83.3 kmh). Ewiniar was located 485 nautical miles (558 miles/898 km) south-southeast of Yokosuka, Japan, has tracked north-northeastward at 13 knots (15 mph/24 kmh). Ewiniar is forecast to turn more northward over the next day, and then turn to the northeast.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>