Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Dolly's Remnants Bringing Showers to the Rio Grande Valley

05.09.2014

Tropical Storm Dolly fizzled out quickly on September 3 after making landfall in eastern Mexico, and NASA's Aqua satellite saw some of the remnants moving into southern Texas. NASA's TRMM satellite analyzed the rainfall occurring in the storm as it was approaching landfall.

NASA's Aqua satellite captured the remnants of Tropical Depression Dolly over northeastern Mexico on Sept. 3 at 19:40 UTC (3:40 p.m. EDT). The image, captured by the Moderate Resolution Imaging Spectroradiometer or MODIS instrument showed the center of Dolly over northeastern Mexico with a band of thunderstorms north of the center of circulation, spiraling over the Texas/Mexico border.


NASA's TRMM satellite flew over Dolly on Sept. 3 at 3:33 a.m. CDT. Moderate to heavy rainfall, falling at a rate of over 1.2 inches per hour, was seen in a strong band of showers moving ashore north of Dolly's center.

Image Credit: NASA/SSAI, Hal Pierce

The Tropical Rainfall Measuring Mission or TRMM satellite flew over Tropical Storm Dolly early on September 3, 2014 at 0844 UTC (3:33 a.m. CDT). TRMM's Microwave Imager (TMI) collected with that orbit showed that Dolly was dropping light to moderate rainfall near the dissipating storm's center of circulation. Moderate to heavy rainfall, falling at a rate of over 30 mm (about 1.2 inches) per hour, was seen in a strong band of showers moving ashore north of Dolly's center.

The previous day, September 2, the TRMM satellite had a good daylight look at Dolly at 1616 UTC (11:16 a.m. CDT). At that time, strong north-northwesterly vertical shear was pushing powerful convective (rising air that condenses and forms thunderstorms) thunderstorms to the south of the tropical cyclone's center. Some of these storms were dropping rain at a rate of almost 83 mm (3.3 inches) per hour.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, that data was used to create a 3-D image that showed those intense storms. The data used to create the 3-D image was derived from TRMM's Precipitation Radar (PR) reflectivity data values. The 3-D image showed that some tops of these storms towered to heights of over 15km (about 9.3 km), indicating strong uplift of air.

The National Hurricane Center (NHC) issued the final advisory on Dolly on Wednesday, September 3 at 11 a.m. EDT (1500 UTC). At that time, Dolly had dissipated about 90 miles (145 km) west-southwest of Tampico, Mexico near 21.7 north latitude and 99.2 west longitude. At that time, Dolly's maximum sustained winds dropped to 30 mph (45 kph) and weakening quickly. It was moving to the west at 8 mph (13 kph).

Dolly's remnants are bringing rainfall to southern Texas today, September 4, 2014. The National Weather Service in Brownsville, Texas noted that low-to-mid-level moisture remains high across the Rio Grande Valley with the remnants of Tropical Depression Dolly across northeast Mexico. That moisture will trigger isolated and scattered thunderstorms across parts of the Valley today.

Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Maryland

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/dolly-atlantic-gulf-of-mexico/#.VAjEb_ldWSo

Further reports about: 3-D Depression EDT Mexico Microwave NASA Radar Resolution Space UTC circulation satellite

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>