Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Cyclone Garry's strength peaking in South Pacific

28.01.2013
NASA's Aqua satellite identified powerful thunderstorms around the center of Cyclone Garry as the storm continued to intensify over warm waters of the South Pacific Ocean. Garry has prompted warnings for the southern group of the Cook Islands.

When NASA's Aqua satellite passed over Cyclone Garry the AIRS instrument captured an infrared image of Garry's clouds, providing temperature data to forecasters at the Joint Typhoon Warning Center (whom forecast tropical cyclones in that region). AIRS, the Atmospheric Infrared Sounder instrument, showed that there was a large area of powerful thunderstorms where cloud tops were so high that they were as cold as -63 degrees Fahrenheit (-52 Celsius). Those thunderstorms were producing heavy rainfall over the open waters of the Southern Pacific Ocean.


NASA's TRMM satellite saw tropical cyclone Garry moving through the open waters of the South Pacific Ocean on Jan. 25, 2013, at 0909 UTC. The heaviest rainfall (red) was occurring in Garry's eastern quadrant at a rate of 2 inches (50 mm) per hour.

Credit: SSAI/NASA, Hal Pierce

Cyclone Garry appeared to be near its peak on Jan. 25 when the storm's maximum sustained winds reached 85 knots (97.8 mph/157.4 kph). At 0900 UTC (4 a.m. EST) Garry's center was located near 16.6 south latitude and 160.2 west longitude, about 515 nautical miles (592.7 miles/953.8 km) west of Bora Bora. Garry was moving to the southeast at 15 knots (17.2 mph/27.7 kph).

Warnings and Watches Posted

The Fiji Meteorological Service has issued storm warnings for the southern group of the Cook Islands that include: Rarotonga, Aitutaki, Mangaia, Atiu, Mauke, Mitiaro, Palmerston, Manuae and Takutea.

A storm warning is in effect for Aitutaki, Manuae, Takutea and Atiu. Sustained winds of 60 knots (69 mph/111.1 kph) with higher gusts can be expected as Garry approaches and passes. Garry is expected to generate high seas and heavy rainfall that could produce flooding in low-lying coastal areas. A gale warning is in effect for Mauke, Mitiaro, Mangaia and Rarotonga. Squally thunderstorms with heavy rainfall may cause flooding in low-lying areas. Garry is expected to bring sustained winds of 40 knots (46 mph/74 kph) with higher gusts and rough seas.

A strong wind warning is in effect for the rest of the southern Cooks. Strong southeast winds with average speeds of 25 to 30 knots (28.7 to 34.5 mph / 46.3 to 55.5 kph) are expected with squally thunderstorms and periods of heavy rainfall. Seas are expected to be rough, and some low-lying flooding is possible. For updates on warnings and watches from the Fiji Meteorological Service, visit: http://www.met.gov.fj/current_warnings.php


NASA's TRMM Satellite Measures Heavy Rainfall in Garry
NASA's Tropical Rainfall Measuring Mission (TRMM) satellite saw tropical cyclone Garry moving through the open waters of the South Pacific Ocean on January 25, 2013 at 0909 UTC (4:09 a.m. EST). Tropical Cyclone Garry was classified as a category two tropical cyclone on the Saffir-Simpson hurricane scale a couple hours earlier but had started to weaken when TRMM flew over. Sustained wind speeds were estimated to be less than 85 knots (~98 mph) and Garry is forecast to continue weakening while moving toward the southeast.

TRMM's main mission is to measure rainfall over tropics but has frequently been useful for monitoring tropical cyclones. The rainfall data compiled on Tropical Cyclone Garry was from two TRMM instruments. Rain rates in the Garry's center were taken from the TRMM Precipitation Radar (PR), the first precipitation radar in space, while rain rates in the outer swath were taken from the TRMM Microwave Imager (TMI). The heaviest rainfall was occurring in Garry's eastern quadrant at a rate of 2 inches (50 mm) per hour.

TRMM's Microwave Imager (TMI) is a passive microwave sensor designed to estimate rainfall in an 878 km (~545.6 miles) wide area by measuring the amount of microwave energy emitted by the Earth and its atmosphere. TRMM PR has a horizontal resolution at the ground of about 5.0 km (~3.1 miles) and sees a strip of the earth that is 154 miles (247 kilometers) wide.

TRMM PR can peer through obscuring clouds and provides 3-D vertical profiles of rain and snow from the Earth's surface up to a height of about 12 miles (20 kilometers). The 3-D and rainfall imagery is created at NASA's Goddard Space Flight Center in Greenbelt, Md.

Steering the Storm

The upper levels of the atmosphere are a major factor in the life and behavior of a tropical cyclone. Forecasters at the Joint Typhoon Warning Center (JTWC) analyzed the upper levels of the atmosphere above Garry and found that the system is deeply embedded in the prevailing westerly winds. Those upper level winds are contributing to Garry's intensification.

By Jan. 27, a trough (elongated area) of low pressure is expected to approach Garry and change its direction to a more east-southeasterly direction.

As Garry moves further to the south, forecasters at JTWC expect vertical wind shear to increase and make the storm decay. Garry is expected to become an extra-tropical cyclone over the next couple of days and become a cold core low by Jan. 29.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>