Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Cyclone Chapala approaching landfall in Yemen

03.11.2015

NASA's Aqua satellite and the GPM satellite passed over Cyclone Chapala as it was approaching landfall in central Yemen on November 2. The Global Precipitation Measurement Mission or GPM core satellite analyzed the heavy rain falling in the major hurricane.


On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Chapala making landfall in Yemen.

Credits: NASA Goddard MODIS Rapid Response Team

On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured an image of Tropical Cyclone Chapala as the eye of the storm was approaching the Yemen coast. Chapala maintained an eye, although it appeared cloud-covered. Animated multispectral satellite imagery shows the system has maintained a 15-nautical-mile-wide eye and structure. The image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center, Greenbelt, Maryland.

Chapala weakened from category four intensity a couple days ago while maintaining a course that steers it toward Yemen.

On Nov. 2 at 0311 UTC (Nov. 1 at 10:11 p.m. EST) the GPM core satellite saw the heaviest rainfall on the western and southern quadrants of the storm, falling at more than 50 mm (1.90 inches) per hour. The most intense rainfall was occurring just southwest of the eye, where rain was falling up to 65 mm (2.5 inches) per hour. GPM is a satellite that is jointly managed by NASA and the Japan Aerospace Exploration Agency.

A couple of days before, the GPM core observatory satellite had another good look at tropical cyclone Chapala. On October 31, 2015 at 0331 UTC (Oct. 30 at 11:31 p.m. EDT) Chapala was a very powerful tropical cyclone with maximum sustained winds of about 117 knots (135 mph). GPM's Microwave Imager (GMI) instrument measured rain dropping at a rate of over 88 mm (3.5 inches) per hour northwest of Chapala's eye.

GPM's Dual-Frequency Precipitation Radar (DPR) swath of coverage passed to the east of Chapala's eye. Feeder bands on that side of the tropical cyclone were found by DPR to be dropping rain at a rate of about 44 mm (1.7 inches) per hour. A 3-D view was created at NASA Goddard looking toward the east. It was derived from GPM's Ka and Ku band radar data. It shows that storm tops on Chapala's eastern side were reaching heights of over 13.4 km (8.3 miles).

At 1500 UTC (10 a.m. EST), Tropical Cyclone Chapala's maximum sustained winds were still near 105 knots (120.4 mph/194.5 kph). That makes Chapala a major hurricane, Category three on the Saffir-Simpson Wind Scale. Chapala was centered near 13.5 degrees north latitude and 50.3 degrees east longitude, about 110 nautical miles east-southeast of Mukalla, Yemen. Chapala has moved to the west at 10 knots (11.5 mph/18.5 kph).

The Joint Typhoon Warning Center (JTWC) expects landfall to occur early on November 3, southwest of Mukalla. JTWC forecasters noted that dry air that is emanating from the Arabian Peninsula will continue to weaken the storm in addition to increasing vertical wind shear. The cyclone is expected to decay rapidly after landfall and dissipate by November 4.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>