Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Scientists Watching, Studying Arctic Changes This Summer

22.08.2014

As we near the final month of summer in the Northern Hemisphere, NASA scientists are watching the annual seasonal melting of the Arctic sea ice cover. The floating, frozen cap that stretches across the Arctic Ocean shrinks throughout summer until beginning to regrow, typically around mid-September.

As of Aug. 19, Arctic sea ice covered about 2.31 million square miles. While this is on track to be larger than the record-breaking low year in 2012, the sea ice extent is still well below average for the past 30 years, and continues a trend of sea ice loss in the Arctic. From 1981 to 2010, the average sea ice extent on Aug. 19 was 2.72 million square miles – 18 percent larger than on that same date this year.


This visualization of the Arctic sea ice cap’s seasonal melting is based on satellite data from the AMSR2 instrument operated by the Japan Aerospace Exploration Agency (JAXA).

Image Credit: Cindy Starr, NASA Goddard's Scientific Visualization Studio

"While this year is not heading toward a record low minimum extent in the Arctic, sea ice is well below normal and continues an overall pattern of decreasing sea ice during summer in the Arctic,” said sea ice scientist Walt Meier, based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

While NASA scientists have used satellites to document sea ice changes for more than 40 years, this summer the agency is also flying three airborne research campaigns to observe different aspects of climate-driven change in the Arctic. 

... more about:
»ARISE »Alaska »Arctic »Carbon »Climate »Greenland »Lynch »NASA »Space »Summer

The ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment) campaign will begin flights later this week from Greenland to measure how changing land and sea ice conditions in the region are affecting the formation of clouds and the exchange of heat from Earth’s surface to space.

For some time scientists at NASA and elsewhere have been concerned about how the retreat of sea ice in summer could affect the climate of the Arctic. This campaign is one of the first to study the interaction between sea ice loss and the Arctic atmosphere.

The CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) campaign is making its third year of flights from Fairbanks, Alaska, over vast regions of Alaska to measure the emissions of greenhouse gases being released from thawing tundra and permafrost.

And an offshoot of NASA’s long-running Operation IceBridge, a plane will fly over Alaskan glaciers to measure how much the thickness of those glaciers has changed from previous years.

For news on these campaigns and the status of Arctic sea ice as it progresses toward its annual minimum, watch for updates on www.nasa.gov/earth and www.nasa.gov/earthrightnow throughout August and September.

Related links:

› ARISE: NASA to Investigate Climate Impacts of Arctic Sea Ice Loss
› CARVE: Is a Sleeping Climate Giant Stirring in the Arctic?
  

Patrick Lynch
NASA’s Earth Science News Team

Patrick Lynch | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/nasa-scientists-watching-studying-arctic-changes/#.U_ZNdfldWSo

Further reports about: ARISE Alaska Arctic Carbon Climate Greenland Lynch NASA Space Summer

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>