Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites Watch the Demise of Hurricane Barbara

03.06.2013
NOAA's GOES-14 satellite captured Hurricane Barbara’s landfall in southwestern Mexico and movement across land, northward toward the Gulf of Mexico.

This 43 second animation of NOAA's GOES-14 satellite observations from May 29 to 31, 2013, shows Barbara making landfall at the beginning of the animation, and moving toward the Gulf of Mexico by May 31. Credit: NASA GOES Project

Hurricane Barbara recently made landfall along the southern Pacific coast of Mexico and NASA’s TRMM and Suomi NPP satellites captured rainfall rates within the storm, and a night-time image of landfall. NOAA’s GOES satellites provided images that were made into an animation showing the landfall and movement across Mexico into the Bay of Campeche on May 31.

According to the National Hurricane Center (NHC), the center of Hurricane Barbara came ashore around 19:50 UTC (12:50 p.m. PDT) on Wednesday, May 29 about 35 km (~20 miles) west of Tonala, Mexico. At landfall, Barbara was a minimal Category 1 hurricane with maximum sustained winds of 75 mph.

NASA-NOAA’s Suomi NPP Satellite Captures Hurricane Barbara at Night

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the NASA-NOAA Suomi NPP satellite captured a nighttime image of Hurricane Barbara before it made landfall in southwestern Mexico. The image was taken on May 29 at 08:22 UTC (4:22 a.m. EDT). In the image city lights from Mexico City and Coatzacoalcos were seen to the north and east of Barbara’s center.

VIIRS, a scanning radiometer, collects visible and infrared imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans.

NASA’s TRMM Satellite Analyzes Barbara’s Rainfall

NASA and the Japanese Space Agency’s Tropical Rainfall Measuring Mission (TRMM) satellite captured several images of the storm during the landfall. TRMM captured the first image of Barbara several hours after it made landfall. The image was taken at 6:46 p.m. PDT on May 29 (01:46 UTC, May 30) and showed the horizontal distribution of rain intensity within the storm. The rainfall images were created at NASA’s Goddard Space Flight Center in Greenbelt, Md. To make the image, several data products from various TRMM instruments are combined. Rain rates in the center of the swath are from the TRMM Precipitation Radar (PR), and those in the outer swath are from the TRMM Microwave Imager (TMI). The rain rates are then overlaid on infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS).

As is typical, after making landfall Barbara began to weaken and was a tropical storm with winds reported at 60 mph at the time of the first TRMM image. The image showed no evidence of an eye and areas of mostly light to moderate rain within the storm. Localized areas of heavier rain are evident inland northwest of the center and along the coast where the storm's circulation is drawing moist air ashore.

After making landfall, Barbara continued in a mostly northward direction across southern Mexico and began to emerge over the southern Gulf of Mexico.

The second rainfall image from TRMM was taken at 09:58 UTC (2:58 am PDT) on May 30. By that time, the National Hurricane Center had downgraded Barbara to a tropical depression with maximum sustained winds of 30 knots (~35 mph). Most of the rain associated with Barbara at that time appeared to be light with a smaller proportion of moderate rain than before and only an isolated area of heavy rain along the Gulf coast side.

TRMM data was used to create a 3-D image to look at precipitation and cloud heights. Most of the cloud tops were of low to moderate height with the exception of the one taller towering thunderstorm that reached up to around 12 km. This convective tower was associated with an area of heavy rain. In order for the storm to regenerate or maintain itself, new areas of convection like this would have to occur near the center.

GOES-14 Satellite Sees Barbara at the Gulf of Mexico

NOAA's GOES-14 satellite captured Hurricane Barbara’s landfall in southwestern Mexico and movement across land, northward toward the Gulf of Mexico. In a 43 second animation of NOAA's GOES-14 satellite observations from May 29 to 31, 2013, Barbara made landfall at the beginning of the animation, and moved toward the Gulf of Mexico by May 31. The images from May 31, showed scattered showers were occurring over the Bay of Campeche and in the coastal city of Coatzacolalcos reported light rain. The animation was created by the NASA/NOAA GOES Project at NASA’s Goddard Space Flight Center.

What Happened to Barbara?

On May 30 at 22:00 UTC (6:00 p.m. EDT), Barbara was a tropical depression with maximum sustained winds near 20 knots. It was centered about 127 nautical miles north-northeast of Tehuantepec, Mexico and was moving north at 4 knots.

By Friday, May 31 at 8:05 a.m. EDT, the National Hurricane Center (NHC) noted that a weak upper level trough (elongated area) of low pressure extended over the western Gulf of Mexico is steering the remnants of Barbara. Barbara’s remnants had weakened further into a trough of low pressure at the surface and stretched from 19 north latitude and 94 west longitude to 22 north and 93 west.

NHC reported that the weak mid-level circulation associated with Barbara continues to gradually dissipate and become embedded within southeasterly flow over the western Gulf of Mexico.

The East Pacific hurricane season officially begins on May 15 and runs through November 30.

Text credit: Steve Lang / Rob Gutro
SSAI/NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Barbara.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>