Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites Watch the Demise of Hurricane Barbara

03.06.2013
NOAA's GOES-14 satellite captured Hurricane Barbara’s landfall in southwestern Mexico and movement across land, northward toward the Gulf of Mexico.

This 43 second animation of NOAA's GOES-14 satellite observations from May 29 to 31, 2013, shows Barbara making landfall at the beginning of the animation, and moving toward the Gulf of Mexico by May 31. Credit: NASA GOES Project

Hurricane Barbara recently made landfall along the southern Pacific coast of Mexico and NASA’s TRMM and Suomi NPP satellites captured rainfall rates within the storm, and a night-time image of landfall. NOAA’s GOES satellites provided images that were made into an animation showing the landfall and movement across Mexico into the Bay of Campeche on May 31.

According to the National Hurricane Center (NHC), the center of Hurricane Barbara came ashore around 19:50 UTC (12:50 p.m. PDT) on Wednesday, May 29 about 35 km (~20 miles) west of Tonala, Mexico. At landfall, Barbara was a minimal Category 1 hurricane with maximum sustained winds of 75 mph.

NASA-NOAA’s Suomi NPP Satellite Captures Hurricane Barbara at Night

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the NASA-NOAA Suomi NPP satellite captured a nighttime image of Hurricane Barbara before it made landfall in southwestern Mexico. The image was taken on May 29 at 08:22 UTC (4:22 a.m. EDT). In the image city lights from Mexico City and Coatzacoalcos were seen to the north and east of Barbara’s center.

VIIRS, a scanning radiometer, collects visible and infrared imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans.

NASA’s TRMM Satellite Analyzes Barbara’s Rainfall

NASA and the Japanese Space Agency’s Tropical Rainfall Measuring Mission (TRMM) satellite captured several images of the storm during the landfall. TRMM captured the first image of Barbara several hours after it made landfall. The image was taken at 6:46 p.m. PDT on May 29 (01:46 UTC, May 30) and showed the horizontal distribution of rain intensity within the storm. The rainfall images were created at NASA’s Goddard Space Flight Center in Greenbelt, Md. To make the image, several data products from various TRMM instruments are combined. Rain rates in the center of the swath are from the TRMM Precipitation Radar (PR), and those in the outer swath are from the TRMM Microwave Imager (TMI). The rain rates are then overlaid on infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS).

As is typical, after making landfall Barbara began to weaken and was a tropical storm with winds reported at 60 mph at the time of the first TRMM image. The image showed no evidence of an eye and areas of mostly light to moderate rain within the storm. Localized areas of heavier rain are evident inland northwest of the center and along the coast where the storm's circulation is drawing moist air ashore.

After making landfall, Barbara continued in a mostly northward direction across southern Mexico and began to emerge over the southern Gulf of Mexico.

The second rainfall image from TRMM was taken at 09:58 UTC (2:58 am PDT) on May 30. By that time, the National Hurricane Center had downgraded Barbara to a tropical depression with maximum sustained winds of 30 knots (~35 mph). Most of the rain associated with Barbara at that time appeared to be light with a smaller proportion of moderate rain than before and only an isolated area of heavy rain along the Gulf coast side.

TRMM data was used to create a 3-D image to look at precipitation and cloud heights. Most of the cloud tops were of low to moderate height with the exception of the one taller towering thunderstorm that reached up to around 12 km. This convective tower was associated with an area of heavy rain. In order for the storm to regenerate or maintain itself, new areas of convection like this would have to occur near the center.

GOES-14 Satellite Sees Barbara at the Gulf of Mexico

NOAA's GOES-14 satellite captured Hurricane Barbara’s landfall in southwestern Mexico and movement across land, northward toward the Gulf of Mexico. In a 43 second animation of NOAA's GOES-14 satellite observations from May 29 to 31, 2013, Barbara made landfall at the beginning of the animation, and moved toward the Gulf of Mexico by May 31. The images from May 31, showed scattered showers were occurring over the Bay of Campeche and in the coastal city of Coatzacolalcos reported light rain. The animation was created by the NASA/NOAA GOES Project at NASA’s Goddard Space Flight Center.

What Happened to Barbara?

On May 30 at 22:00 UTC (6:00 p.m. EDT), Barbara was a tropical depression with maximum sustained winds near 20 knots. It was centered about 127 nautical miles north-northeast of Tehuantepec, Mexico and was moving north at 4 knots.

By Friday, May 31 at 8:05 a.m. EDT, the National Hurricane Center (NHC) noted that a weak upper level trough (elongated area) of low pressure extended over the western Gulf of Mexico is steering the remnants of Barbara. Barbara’s remnants had weakened further into a trough of low pressure at the surface and stretched from 19 north latitude and 94 west longitude to 22 north and 93 west.

NHC reported that the weak mid-level circulation associated with Barbara continues to gradually dissipate and become embedded within southeasterly flow over the western Gulf of Mexico.

The East Pacific hurricane season officially begins on May 15 and runs through November 30.

Text credit: Steve Lang / Rob Gutro
SSAI/NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Barbara.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>