Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites Watch the Demise of Hurricane Barbara

03.06.2013
NOAA's GOES-14 satellite captured Hurricane Barbara’s landfall in southwestern Mexico and movement across land, northward toward the Gulf of Mexico.

This 43 second animation of NOAA's GOES-14 satellite observations from May 29 to 31, 2013, shows Barbara making landfall at the beginning of the animation, and moving toward the Gulf of Mexico by May 31. Credit: NASA GOES Project

Hurricane Barbara recently made landfall along the southern Pacific coast of Mexico and NASA’s TRMM and Suomi NPP satellites captured rainfall rates within the storm, and a night-time image of landfall. NOAA’s GOES satellites provided images that were made into an animation showing the landfall and movement across Mexico into the Bay of Campeche on May 31.

According to the National Hurricane Center (NHC), the center of Hurricane Barbara came ashore around 19:50 UTC (12:50 p.m. PDT) on Wednesday, May 29 about 35 km (~20 miles) west of Tonala, Mexico. At landfall, Barbara was a minimal Category 1 hurricane with maximum sustained winds of 75 mph.

NASA-NOAA’s Suomi NPP Satellite Captures Hurricane Barbara at Night

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the NASA-NOAA Suomi NPP satellite captured a nighttime image of Hurricane Barbara before it made landfall in southwestern Mexico. The image was taken on May 29 at 08:22 UTC (4:22 a.m. EDT). In the image city lights from Mexico City and Coatzacoalcos were seen to the north and east of Barbara’s center.

VIIRS, a scanning radiometer, collects visible and infrared imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans.

NASA’s TRMM Satellite Analyzes Barbara’s Rainfall

NASA and the Japanese Space Agency’s Tropical Rainfall Measuring Mission (TRMM) satellite captured several images of the storm during the landfall. TRMM captured the first image of Barbara several hours after it made landfall. The image was taken at 6:46 p.m. PDT on May 29 (01:46 UTC, May 30) and showed the horizontal distribution of rain intensity within the storm. The rainfall images were created at NASA’s Goddard Space Flight Center in Greenbelt, Md. To make the image, several data products from various TRMM instruments are combined. Rain rates in the center of the swath are from the TRMM Precipitation Radar (PR), and those in the outer swath are from the TRMM Microwave Imager (TMI). The rain rates are then overlaid on infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS).

As is typical, after making landfall Barbara began to weaken and was a tropical storm with winds reported at 60 mph at the time of the first TRMM image. The image showed no evidence of an eye and areas of mostly light to moderate rain within the storm. Localized areas of heavier rain are evident inland northwest of the center and along the coast where the storm's circulation is drawing moist air ashore.

After making landfall, Barbara continued in a mostly northward direction across southern Mexico and began to emerge over the southern Gulf of Mexico.

The second rainfall image from TRMM was taken at 09:58 UTC (2:58 am PDT) on May 30. By that time, the National Hurricane Center had downgraded Barbara to a tropical depression with maximum sustained winds of 30 knots (~35 mph). Most of the rain associated with Barbara at that time appeared to be light with a smaller proportion of moderate rain than before and only an isolated area of heavy rain along the Gulf coast side.

TRMM data was used to create a 3-D image to look at precipitation and cloud heights. Most of the cloud tops were of low to moderate height with the exception of the one taller towering thunderstorm that reached up to around 12 km. This convective tower was associated with an area of heavy rain. In order for the storm to regenerate or maintain itself, new areas of convection like this would have to occur near the center.

GOES-14 Satellite Sees Barbara at the Gulf of Mexico

NOAA's GOES-14 satellite captured Hurricane Barbara’s landfall in southwestern Mexico and movement across land, northward toward the Gulf of Mexico. In a 43 second animation of NOAA's GOES-14 satellite observations from May 29 to 31, 2013, Barbara made landfall at the beginning of the animation, and moved toward the Gulf of Mexico by May 31. The images from May 31, showed scattered showers were occurring over the Bay of Campeche and in the coastal city of Coatzacolalcos reported light rain. The animation was created by the NASA/NOAA GOES Project at NASA’s Goddard Space Flight Center.

What Happened to Barbara?

On May 30 at 22:00 UTC (6:00 p.m. EDT), Barbara was a tropical depression with maximum sustained winds near 20 knots. It was centered about 127 nautical miles north-northeast of Tehuantepec, Mexico and was moving north at 4 knots.

By Friday, May 31 at 8:05 a.m. EDT, the National Hurricane Center (NHC) noted that a weak upper level trough (elongated area) of low pressure extended over the western Gulf of Mexico is steering the remnants of Barbara. Barbara’s remnants had weakened further into a trough of low pressure at the surface and stretched from 19 north latitude and 94 west longitude to 22 north and 93 west.

NHC reported that the weak mid-level circulation associated with Barbara continues to gradually dissipate and become embedded within southeasterly flow over the western Gulf of Mexico.

The East Pacific hurricane season officially begins on May 15 and runs through November 30.

Text credit: Steve Lang / Rob Gutro
SSAI/NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Barbara.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>