Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see Tropical Storm Matthew grow quickly, warnings up in Central America

27.09.2010
An instrument on NASA's Aqua satellite noticed increasing colder cloud top temperatures of tropical depression 15 in the south-central Caribbean just before it strengthened into Tropical Storm Matthew late on Sept. 23. The TRMM satellite also spotted heavy rainfall within the system. Matthew is now headed to the western Caribbean and watches and warnings are in place as Matthew may continue to strengthen.

Cloud top temperatures indicate the strength of the storm to forecasters. The colder the cloud top temperatures, the stronger the convection and uplift. When cloud top temperatures drop, as they did in Atmospheric Infrared Sounder (AIRS) imagery captured on Sept. 23 at18:53 UTC (2:53 p.m. EDT) it indicates the storm is gaining strength.


TRMM data from Sept. 24 at 0159 UTC showed moderate to heavy rainfall (red) southwest of Matthew\'s center of circulation. The approximate center of circulation is shown by a red tropical storm symbol. Credit: NASA/SSAI, Hal Pierce

At that time, Matthew's maximum sustained winds were near 40 mph. In the image, the coldest cloud top temperatures (colder than -63 Fahrenheit) appeared around the center of Matthew's circulation already giving the appearance of an eye. The AIRS infrared image on Sept. 24 at 3:05 a.m. EDT showed a concentrated area of strong thunderstorms around Matthew's center as the sustained winds had increased to 50 mph.

AIRS has the ability to determine cloud top and sea surface temperatures from its position in space aboard NASA's Aqua satellite. Cloud top temperatures help forecasters know if a storm is powering up or powering down and Matthew is powering up.

In addition to the Aqua satellite, the Tropical Rainfall Measuring Mission (TRMM) satellite flew nearly above Matthews's location on Sep. 24 at 0159 UTC (9:59 p.m. EDT Sept. 23) capturing data used in a rainfall analysis done at NASA's Goddard Space Flight Center in Greenbelt, Md. TRMM Microwave Imager (TMI) data analyzed from this orbit showed moderate to heavy rainfall southwest of MATTHEW's center of circulation.

At 11 a.m. EDT on Sept. 24, Matthew's maximum sustained winds were near 50 mph, and strengthening is expected in the warm Caribbean waters, so the National Hurricane Center said that Matthew could become a hurricane by Saturday. Meanwhile at 11 a.m. Sept. 24, Matthew was located about 80 miles east of Cabo Gracias a Dios, Nicaragua, near 14.4 North and 82.2 West. It was moving west at 20 mph, and had a minimum central pressure of 1001 millibars. Just 15 hours before, its minimum central pressure was 1005 millibars, and a drop in pressure indicates a strengthening storm.

A hurricane watch is in effect for Puerto Cabezas, Nicaragua to Limon, Honduras including the offshore islands. A tropical storm warning is in effect for Puerto Cabezas, Nicaragua to Limon, Honduras including the offshore islands.

A tropical storm warning is in effect for Puerto Cabezas, Nicaragua northward to the border with Honduras including the offshore islands and the coast of Honduras including the offshore islands. A tropical storm watch is in effect for the coast of Belize, while a hurricane watch is in effect for Puerto Cabezas, Nicaragua to Limon, Honduras. Hurricane conditions are possible between 11 p.m. EDT tonight and 11 a.m. EDT Saturday in that watch area.

Tropical storm-force winds are expected to reach the coastal warning areas during the afternoon of Sept. 24, and a storm surge is expected to produce flooding and dangerous surf. Expected rainfall amounts of 6 to 10 inches are forecast with isolated amounts to 15 inches.

According to the National Hurricane Center in Miami, on the forecast track the center of the Matthew is expected to be near the Nicaragua/Honduras border late Friday or early Saturday morning then move over land in northern Honduras on Saturday. Updates on Matthew can be found at the National Hurricane Center's web page: www.nhc.noaa.gov.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>