Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites showed little change in Tropical Storm Leslie

05.09.2012
Over the weekend of Aug. 31 to Sept. 2, Tropical Storm Leslie's maximum sustained winds were pretty constant and satellite imagery from NASA's Aqua and Terra satellites confirm the steadiness of the storm. That story is expected to change later this week however, as Leslie nears Bermuda and is expected to reach hurricane strength. Meanwhile, Leslie is still about the same strength today, Sept. 4 because of wind shear.

Two visible images from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies onboard both of NASA's Aqua and Terra satellites showed that Tropical Storm Leslie didn't change much in terms of form or strength from Aug. 31 at 12:55 p.m. EDT to Sept. 1 10:30 a.m. EDT. Leslie's shape appeared almost identical in a 22 hour period at a time that its maximum sustained winds were near 60 mph (95 kmh).


These visible images from the MODIS instrument onboard NASA's Aqua and Terra satellites showed that Tropical Storm Leslie didn't change much in terms of form or strength from Aug. 31 at 12:55 p.m. EDT to Sept. 1 10:30 a.m. EDT.

Credit: NASA Goddard MODIS Rapid Response Team

On Sept. 4 at 11 a.m. EDT, Tropical Storm Leslie's maximum sustained winds had still not changed much from the time NASA's two satellites passed over it on the weekend. Maximum sustained winds were now up to 65 mph (100 kmh). Leslie is about 410 miles (670 km) in diameter, as tropical-storm force winds extend up to 205 miles (335 km) from the center.

The National Hurricane Center noted that Leslie's path may become somewhat erratic over the next couple od days on its northward journey.

Leslie was located about 525 miles (840 km) south-southeast of Bermuda, near latitude 25.0 north and longitude 62.5 west. Leslie is moving toward the north near 3 mph (6 kmh) and is expected to continue moving slowly in that direction.

Ocean swells from Tropical Storm Leslie may affect the Leeward Islands, Puerto Rico and the Virgin Islands, and those conditions are expected to spread to Bermuda and the eastern U.S.

Satellite data on Sept. 4 showed that the rising air that forms the thunderstorms that make up the storm (convection) has decreased near Leslie's center. Leslie is being battered by wind shear from the northwest at 20 knots, which is pushing the showers and thunderstorms to the southeast. The National Hurricane Center update at 11 a.m. EDT noted that "the convective cloud structure now more resembles a curved band pattern [than a circular tropical cyclone]." In fact, the low-level center of Leslie appears to be 30 miles north of the mid-level center. That's important because the centers of tropical cyclones need to be stacked on top of each other like a coiled spring, in order to rotate and intensify. Basically, it means that Leslie is struggling.

That environment is expected to change, though, as Leslie moves north and wind shear relaxes, giving the storm a chance to organize. That's why the National Hurricane Center expects Leslie to strengthen into a hurricane by the end of the week.

For the Aug. 31 image in high resolution: http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?image=Leslie.A2012244.1655.2km.jpg

For the Sept. 1 image in high resolution: http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?image=Leslie.A2012245.1430.2km.jpg

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>