Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see Neoguri grow into a super typhoon

08.07.2014

From July 4 to July 7 Tropical Cyclone Neoguri strengthened from a tropical storm into a supertyphoon. NASA's Terra and Aqua satellites passed over the rapidly intensifying storm and provided forecasters with visible, infrared and microwave data on the powerful supertyphoon.

On July 4 at 0900 UTC (5 a.m. EDT) Neoguri had maximum sustained winds near 55 knots (63.2 mph/101.9 kph). It was located near 13.1 north and 141.4 east, about 207 nautical miles (238.2 miles/383.4 km) west of Andersen Air Force Base, Guam. It was moving to the northwest at 13 knots (14.9 mph/24.0 kph).


The MODIS instrument aboard NASA's Terra satellite captured this visible image of Typhoon Neoguri on July 5 at 01:20 UTC (July 4 at 9:20 p.m. EDT) as it moved through the Northwestern Pacific Ocean.

Credit: NASA Goddard MODIS Rapid Response Team

This visible image from the MODIS instrument aboard NASA's Aqua satellite at 03:40 UTC on July 4 showed the bulk of the clouds and showers south and east of a clear eye.

NASA's Terra satellite passed over Neoguri as it became a typhoon on July 5. At 01:20 UTC (July 4 at 9:20 p.m. EDT) the Moderate Resolution Imaging Spectroradiometer known as MODIS that flies aboard Terra captured a visible image of Neoguri as it moved through the Northwestern Pacific Ocean. The MODIS image showed a clear eye, and a large, thick band of thunderstorms in the southern quadrant of the storm wrapping into the center.

... more about:
»EDT »JTWC »MODIS »NASA »UTC »knots »satellite »satellites »winds

On July 5 at 0900 UTC (5 a.m. EDT) satellite data helped confirm that Neoguri had become a typhoon in the Northwestern Pacific after it passed Guam. At that time it was centered near 16.0 north and 137.0 east, about 813 nautical miles (935.6 miles/1,506 km) southeast of Kadena Air Base. It was moving west-northwest at 14 knots (16.1 mph/25.9 kph) and had maximum sustained winds near 115 knots (132.3 mph/213.0 kph).

On July 6 Typhoon Neoguri continued to strengthen. Neoguri was located near 18.5 north and 131.4 east at 0900 UTC (5 a.m. EDT) on July 6. That's about 661 nautical miles (760.7 miles/1,224 km) southeast of Kadena Air Base, Okinawa, Japan. It had maximum sustained winds near 120 knots (138.1 mph/222.2 kph) and was moving to the west-northwest at 15 knots (17.2 mph/27.7 kph). The Joint Typhoon Warning Center or JTWC noted that Neoguri was generating very rough and high seas as high as 32 feet (9.7 meters).

A false-colored infrared image of Supertyphoon Neoguri on July 6 at 17:17 UTC (1:17 p.m. EDT) was made at NASA's Jet Propulsion Laboratory in Pasadena, California using data from the Atmospheric Infrared Sounder (AIRS) instrument. AIRS flies aboard NASA's Aqua satellite. The infrared imagery showed very cold, high, powerful thunderstorms around the center of Neoguri's 40-nautical-mile-wide-eye and in a thick band south of the center.

By July 7 at 1500 UTC (11 a.m. EDT), Neoguri had grown into a supertyphoon with maximum sustained winds near 130 knots (149.6 mph/240.8 kph). The JTWC expects Neoguri to strengthen further. Neoguri was located near 21.6 north latitude and 127.3 east longitude, about 246 nautical miles (283.1 miles/455.6 km) south-southwest of Kadena Air Base, Okinawa, Japan. It was moving to the northwest at 15 knots (17.2 mph/27.7 kph). As Neoguri strengthened, the ocean has become more turbulent, and JTWC estimates maximum significant wave heights near 40 feet (12.1 meters).

Tropical storm-force winds extend 210 nautical miles (241.7 miles/388.9 km) from the center, and hurricane-force winds extend up to 60 nautical miles (69.0 miles/111.1 km) from the center.

For a graphic of watches in warnings in effect in Japan, visit the Japan Meteorological Agency's page: http://www.jma.go.jp/en/warn/.

Neoguri is moving northwest and continuing to strengthen. The JTWC expects Neoguri to turn to the north late on July 7 (EDT) and pass Kadena Air Base. A landfall in Kyushu is expected by July 9. The JTWC noted in a July 7 discussion: by July 9, cooling sea surface temperatures, increasing vertical wind shear ahead of the mid-latitude westerlies (winds), and landfall into Kyushu, Japan, will slowly erode the system.

Rob Gutro | Eurek Alert!

Further reports about: EDT JTWC MODIS NASA UTC knots satellite satellites winds

More articles from Earth Sciences:

nachricht ChemCam findings hint at oxygen-rich past on Mars
28.06.2016 | DOE/Los Alamos National Laboratory

nachricht Previously unknown global ecological disaster discovered
28.06.2016 | Universität Zürich

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016 | Physics and Astronomy

Unidentified spectra detector

28.06.2016 | Life Sciences

Clandestine black hole may represent new population

28.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>