Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see Otto become a tropical storm

08.10.2010
NASA satellites have collected data as the Atlantic Ocean's Tropical Depression 17 has undergone two changes in less than 24 hours. Since Oct. 6, the depression has strengthened and has tropical storm-force winds and has morphed from a sub-tropical storm into a tropical storm.

After a United States Air Force Reserve reconnaissance flight subtropical depression seventeen was upgraded by the National Hurricane Center (NHC) to subtropical storm Otto on Oct. 6 at 5 p.m. EDT (2100 UTC). On Oct. 6 and 7, NASA's TRMM and Aqua satellites were flying overhead measuring very cold, high thunderstorm cloud tops and heavy rainfall.


The Tropical Rainfall Measuring Mission (TRMM) satellite passed above Otto on October 7 at 0945 UTC (5:45 a.m. EDT) and the TRMM Precipitation Radar data revealed a feeder band in the southern part of the storm was dropping moderate to heavy (red) rainfall. The TRMM Microwave Imager indicated that convection in the center of the storm was generating thunderstorms. Credit: NASA/SSAI, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite is managed by NASA and the Japanese Space Agency. At NASA's Goddard Space Flight Center in Greenbelt, Md., meteorologists create satellite imagery from TRMM data. When TRMM passed above Otto this morning, Oct. 7 at 0945 UTC (5:45 a.m. EDT) the TRMM Precipitation Radar data revealed a feeder band in the southern part of the storm was dropping moderate to heavy rainfall (falling at a rate as much as 2 inches per hour). Coverage from TRMM Microwave Imager data indicated that convection in the center of the storm was generating thunderstorms.

At 11 a.m. EDT on Oct. 7, Tropical Storm Otto had maximum sustained winds near 60 mph, and strengthening is likely, according to the National Hurricane Center. Otto could become a hurricane in the next day or two. Otto was located about 255 miles northeast of Grand Turk Island or 620 miles south-southwest of Bermuda near 23.8 North latitude and 68.0 West longitude. Otto is far away enough from any land areas that there are no watches or warnings in effect. Otto was slowly trudging through the Atlantic Ocean at 2 mph and moving northeast. Otto's minimum central pressure was 992 millibars.

Forecasters at the NHC said that "Otto has finally transitioned into a tropical cyclone based on an analysis of vertical temperatures on Oct. 7 at 0935 UTC (5:35 a.m. EDT)" from the University of Wisconsin-Cooperative Institute for Meteorological Satellite Services (CIMSS). CMISS analyzed data from the Advanced Microwave Sounding Unit (AMSU) instrument. AMSU is a multi-channel microwave radiometer installed on a number of satellites, including NASA's Aqua satellite and NOAA polar orbiting satellites. The AMSU instrument examines several bands of microwave radiation from the atmosphere to provide data on temperature and moisture levels throughout a tropical cyclone. CIMSS utilizes NASA satellite data and offers real-time and archived tropical cyclone products from it home (web) page. The AMSU data indicated that the warm core of Otto had "moved upward" from the mid-levels of the storm to the upper-levels, re-classifying the storm as "tropical" instead of "sub-tropical."

Data from NASA's Atmospheric Infrared Sounder (AIRS) instrument also helped confirm the transition into a tropical storm. AIRS is an instrument that also flies aboard NASA's Aqua satellite. AIRS imagery showed a recent burst of deep convection, where the cloud top temperatures were near -80 Celsius (-112 Fahrenheit) over the center of Otto.

Microwave images are created when data from NASA's Aqua satellite AIRS and AMSU instruments are combined. A microwave image from data at 2:29 a.m. EDT on October 7 was created at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The image indicated there was a large area of precipitation or ice in the cloud tops in Tropical Storm Otto.

Otto is meandering around, but a large trough (an elongated area of low pressure) that is along the U.S. East Coast is expected to continue moving east and push Otto into the open waters of the Atlantic over the next couple of days.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>