Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA satellites see Otto become a tropical storm

NASA satellites have collected data as the Atlantic Ocean's Tropical Depression 17 has undergone two changes in less than 24 hours. Since Oct. 6, the depression has strengthened and has tropical storm-force winds and has morphed from a sub-tropical storm into a tropical storm.

After a United States Air Force Reserve reconnaissance flight subtropical depression seventeen was upgraded by the National Hurricane Center (NHC) to subtropical storm Otto on Oct. 6 at 5 p.m. EDT (2100 UTC). On Oct. 6 and 7, NASA's TRMM and Aqua satellites were flying overhead measuring very cold, high thunderstorm cloud tops and heavy rainfall.

The Tropical Rainfall Measuring Mission (TRMM) satellite passed above Otto on October 7 at 0945 UTC (5:45 a.m. EDT) and the TRMM Precipitation Radar data revealed a feeder band in the southern part of the storm was dropping moderate to heavy (red) rainfall. The TRMM Microwave Imager indicated that convection in the center of the storm was generating thunderstorms. Credit: NASA/SSAI, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite is managed by NASA and the Japanese Space Agency. At NASA's Goddard Space Flight Center in Greenbelt, Md., meteorologists create satellite imagery from TRMM data. When TRMM passed above Otto this morning, Oct. 7 at 0945 UTC (5:45 a.m. EDT) the TRMM Precipitation Radar data revealed a feeder band in the southern part of the storm was dropping moderate to heavy rainfall (falling at a rate as much as 2 inches per hour). Coverage from TRMM Microwave Imager data indicated that convection in the center of the storm was generating thunderstorms.

At 11 a.m. EDT on Oct. 7, Tropical Storm Otto had maximum sustained winds near 60 mph, and strengthening is likely, according to the National Hurricane Center. Otto could become a hurricane in the next day or two. Otto was located about 255 miles northeast of Grand Turk Island or 620 miles south-southwest of Bermuda near 23.8 North latitude and 68.0 West longitude. Otto is far away enough from any land areas that there are no watches or warnings in effect. Otto was slowly trudging through the Atlantic Ocean at 2 mph and moving northeast. Otto's minimum central pressure was 992 millibars.

Forecasters at the NHC said that "Otto has finally transitioned into a tropical cyclone based on an analysis of vertical temperatures on Oct. 7 at 0935 UTC (5:35 a.m. EDT)" from the University of Wisconsin-Cooperative Institute for Meteorological Satellite Services (CIMSS). CMISS analyzed data from the Advanced Microwave Sounding Unit (AMSU) instrument. AMSU is a multi-channel microwave radiometer installed on a number of satellites, including NASA's Aqua satellite and NOAA polar orbiting satellites. The AMSU instrument examines several bands of microwave radiation from the atmosphere to provide data on temperature and moisture levels throughout a tropical cyclone. CIMSS utilizes NASA satellite data and offers real-time and archived tropical cyclone products from it home (web) page. The AMSU data indicated that the warm core of Otto had "moved upward" from the mid-levels of the storm to the upper-levels, re-classifying the storm as "tropical" instead of "sub-tropical."

Data from NASA's Atmospheric Infrared Sounder (AIRS) instrument also helped confirm the transition into a tropical storm. AIRS is an instrument that also flies aboard NASA's Aqua satellite. AIRS imagery showed a recent burst of deep convection, where the cloud top temperatures were near -80 Celsius (-112 Fahrenheit) over the center of Otto.

Microwave images are created when data from NASA's Aqua satellite AIRS and AMSU instruments are combined. A microwave image from data at 2:29 a.m. EDT on October 7 was created at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The image indicated there was a large area of precipitation or ice in the cloud tops in Tropical Storm Otto.

Otto is meandering around, but a large trough (an elongated area of low pressure) that is along the U.S. East Coast is expected to continue moving east and push Otto into the open waters of the Atlantic over the next couple of days.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>