Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Satellites Find Freshwater Losses in Middle East

A new study using data from a pair of gravity-measuring NASA satellites finds that large parts of the arid Middle East region lost freshwater reserves rapidly during the past decade.

Scientists at the University of California, Irvine; NASA's Goddard Space Flight Center in Greenbelt, Md.; and the National Center for Atmospheric Research in Boulder, Colo., found during a seven-year period beginning in 2003 that parts of Turkey, Syria, Iraq and Iran along the Tigris and Euphrates river basins lost 117 million acre feet (144 cubic kilometers) of total stored freshwater. That is almost the amount of water in the Dead Sea. The researchers attribute about 60 percent of the loss to pumping of groundwater from underground reservoirs.

Variations in total water storage from normal, in millimeters, in the Tigris and Euphrates river basins, as measured by NASA's Gravity Recovery and Climate Experiment (GRACE) satellites, from January 2003 through December 2009. Reds represent drier conditions, while blues represent wetter conditions. The majority of the water lost was due to reductions in groundwater caused by human activities. By periodically measuring gravity regionally, GRACE tells scientists how much water storage changes over time.

Image credit: NASA/UC Irvine/NCAR

The findings, to be published Friday, Feb. 15, in the journal Water Resources Research, are the result of one of the first comprehensive hydrological assessments of the entire Tigris-Euphrates-Western Iran region. Because obtaining ground-based data in the area is difficult, satellite data, such as those from NASA's twin Gravity Recovery and Climate Experiment (GRACE) satellites, are essential. GRACE is providing a global picture of water storage trends and is invaluable when hydrologic observations are not routinely collected or shared beyond political boundaries.

"GRACE data show an alarming rate of decrease in total water storage in the Tigris and Euphrates river basins, which currently have the second fastest rate of groundwater storage loss on Earth, after India," said Jay Famiglietti, principal investigator of the study and a hydrologist and professor at UC Irvine. "The rate was especially striking after the 2007 drought. Meanwhile, demand for freshwater continues to rise, and the region does not coordinate its water management because of different interpretations of international laws."

Famiglietti said GRACE is like having a giant scale in the sky. Within a given region, rising or falling water reserves alter Earth's mass, influencing how strong the local gravitational attraction is. By periodically measuring gravity regionally, GRACE tells us how much each region's water storage changes over time.

"GRACE really is the only way we can estimate groundwater storage changes from space right now," Famiglietti said.

The team calculated about one-fifth of the observed water losses resulted from soil drying up and snowpack shrinking, partly in response to the 2007 drought. Loss of surface water from lakes and reservoirs accounted for about another fifth of the losses. The majority of the water lost -- approximately 73 million acre feet (90 cubic kilometers) -- was due to reductions in groundwater.

"That's enough water to meet the needs of tens of millions to more than a hundred million people in the region each year, depending on regional water use standards and availability," said Famiglietti.

Famiglietti said when a drought reduces an available surface water supply, irrigators and other water users turn to groundwater supplies. For example, the Iraqi government drilled about 1,000 wells in response to the 2007 drought, a number that does not include the numerous private wells landowners also very likely drilled.

"Water management is a complex issue in the Middle East -- an area that already is dealing with limited water resources and competing stakeholders," said Kate Voss, lead author of the study and a water policy fellow with the University of California's Center for Hydrological Modeling in Irvine, which Famiglietti directs.

"The Middle East just does not have that much water to begin with, and it's a part of the world that will be experiencing less rainfall with climate change," said Famiglietti. "Those dry areas are getting dryer. The Middle East and the world's other arid regions need to manage available water resources as best they can."

Study co-author Matt Rodell of Goddard added it is important to remember groundwater is being extracted unsustainably in parts of the United States, as well.

"Groundwater is like your savings account," Rodell said. "It's okay to draw it down when you need it, but if it's not replenished, eventually it will be gone."

GRACE is a joint mission with the German Aerospace Center and the German Research Center for Geosciences, in partnership with the University of Texas at Austin. For more about GRACE, visit: and . The California Institute of Technology in Pasadena manages JPL for NASA

Alan Buis 818-354-0474
Jet Propulsion Laboratory, Pasadena, Calif.
Steve Cole 202-358-0918
NASA Headquarters, Washington
Janet Wilson 949-824-3969
University of California, Irvine

Alan Buis | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>