Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites See Cyclone Narelle Torn Apart

16.01.2013
NASA's TRMM and Aqua satellites showed how Tropical Cyclone Narelle has fallen far from being a powerful cyclone in the Southern Indian Ocean.

A time series of infrared images from an Aqua satellite instrument provides a clear picture of Narelle's former power and its recent demise, while TRMM 3-D data showed falling cloud heights and weaker rainfall.


This series of infrared images of Cyclone Narelle was taken over 6 days by the AIRS instrument that flies aboard NASA's Aqua satellite. It shows the growth into a cyclone and weakening back to a tropical storm. The purple areas are the coldest cloud top temperatures, and strongest storms with heaviest rainfall occurring in the cyclone. Top row L to R: Jan. 10 at 0623 UTC; Jan. 11 at 1759 UTC; Jan. 12 at 0605 UTC. Bottom row, L to R: Jan. 13 at 0647 UTC; Jan. 14 at 0553 UTC; and Jan. 15 at 0635 UTC. Credit: NASA JPL, Ed Olsen

Narelle, once a powerful tropical cyclone with winds of 115 knots (~132 mph), was equivalent to a category 4 hurricane on the Saffir-Simpson scale. The storm has continued to steadily weaken as it made its way southward paralleling the coast of Western Australia.

The Tropical Rainfall Measuring Mission or TRMM satellite is a joint mission between NASA and the Japanese Space Agency. TRMM captured an image of Narelle at 04:04 UTC (12:04 pm Australian Western Standard Time) on January 14, 2013. At the time, the center of circulation was located about 350 km (~215 miles) due west of the coast of Australia, and the storm's intensity was down to a category 2 cyclone--equivalent to a category 1 hurricane. TRMM revealed that the intense rainbands previously surrounding the storm had greatly diminished in size and intensity and no longer wrapped completely around the storm.

TRMM saw mostly moderate rainfall located southeast of the center, and revealed that an eye was no longer visible. TRMM Precipitation Radar instrument data was used to create a 3-D image of the storm that showed most of the highest cloud tops had diminished, although some moderately high tops (around 10 km) remain in an area of moderate rain, located southeast of the center.

Infrared date from NASA's Aqua satellite provided a look at the life of Narelle, from its peak to its end. A time series of infrared images of Cyclone Narelle was taken over 6 days by the Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite. AIRS data showed Cyclone Narelle's growth into a cyclone, where the storm developed a clear eye on infrared imagery. At the time of peak intensity, AIRS infrared data indicated that that thunderstorms around the eye were so strong and so high in the atmosphere, that infrared data indicated they had temperatures of -63F (-52C). By Jan. 15, AIRS data showed that Narelle had been blown apart by wind shear. AIRS data was captured on Jan. 10 at 0623 UTC; Jan. 11 at 1759 UTC; Jan. 12 at 0605 UTC; Jan. 13 at 0647 UTC; Jan. 14 at 0553 UTC; and Jan. 15 at 0635 UTC.

The Joint Typhoon Warning Center issued their final warning on Narelle on Jan. 14 at 2100 UTC (8 p.m. EST/U.S.). At that time Narelle's maximum sustained winds were near 35 knots (40 mph/64.8 kph), and it had become extra-tropical. The center was located near 29.9 south latitude and 110.2 east longitude. It was moving to the south at 18 knots (20.7 mph/33.3 kph).

On Jan. 15, wind shear had taken its toll on Narelle, and had blown the storm apart. AIRS infrared imagery from NASA's Aqua satellite on Jan. 15 showed that Narelle's remnants appeared more like a paint brush stroke from north to southeast, with no discernable center. Narelle's remnants were south of Perth, near Cape Leeuwin where they are expected to dissipate.

As Narelle continues to dissipate, the Australian Bureau of Meteorology maintained a strong wind warning for the following areas: Perth Local Waters, Lancelin Coast, Perth Coast and Bunbury Geographe Coast.

Narelle was the second cyclone to the form in the southern Indian Ocean this year. Cyclone Dumile passed east of Madagascar the first week of the year--and the fourth of the season. Typically there are about 9 tropical storms per season in the southern Indian Ocean, which runs year round from July through June.

Text credit: Rob Gutro/Steve Lang
NASA's Goddard Space Flight Center, Greenbelt, Md./SSAI

Rob Gutro/Steve Lang | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Narelle.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>