Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites See Cyclone Narelle Torn Apart

16.01.2013
NASA's TRMM and Aqua satellites showed how Tropical Cyclone Narelle has fallen far from being a powerful cyclone in the Southern Indian Ocean.

A time series of infrared images from an Aqua satellite instrument provides a clear picture of Narelle's former power and its recent demise, while TRMM 3-D data showed falling cloud heights and weaker rainfall.


This series of infrared images of Cyclone Narelle was taken over 6 days by the AIRS instrument that flies aboard NASA's Aqua satellite. It shows the growth into a cyclone and weakening back to a tropical storm. The purple areas are the coldest cloud top temperatures, and strongest storms with heaviest rainfall occurring in the cyclone. Top row L to R: Jan. 10 at 0623 UTC; Jan. 11 at 1759 UTC; Jan. 12 at 0605 UTC. Bottom row, L to R: Jan. 13 at 0647 UTC; Jan. 14 at 0553 UTC; and Jan. 15 at 0635 UTC. Credit: NASA JPL, Ed Olsen

Narelle, once a powerful tropical cyclone with winds of 115 knots (~132 mph), was equivalent to a category 4 hurricane on the Saffir-Simpson scale. The storm has continued to steadily weaken as it made its way southward paralleling the coast of Western Australia.

The Tropical Rainfall Measuring Mission or TRMM satellite is a joint mission between NASA and the Japanese Space Agency. TRMM captured an image of Narelle at 04:04 UTC (12:04 pm Australian Western Standard Time) on January 14, 2013. At the time, the center of circulation was located about 350 km (~215 miles) due west of the coast of Australia, and the storm's intensity was down to a category 2 cyclone--equivalent to a category 1 hurricane. TRMM revealed that the intense rainbands previously surrounding the storm had greatly diminished in size and intensity and no longer wrapped completely around the storm.

TRMM saw mostly moderate rainfall located southeast of the center, and revealed that an eye was no longer visible. TRMM Precipitation Radar instrument data was used to create a 3-D image of the storm that showed most of the highest cloud tops had diminished, although some moderately high tops (around 10 km) remain in an area of moderate rain, located southeast of the center.

Infrared date from NASA's Aqua satellite provided a look at the life of Narelle, from its peak to its end. A time series of infrared images of Cyclone Narelle was taken over 6 days by the Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite. AIRS data showed Cyclone Narelle's growth into a cyclone, where the storm developed a clear eye on infrared imagery. At the time of peak intensity, AIRS infrared data indicated that that thunderstorms around the eye were so strong and so high in the atmosphere, that infrared data indicated they had temperatures of -63F (-52C). By Jan. 15, AIRS data showed that Narelle had been blown apart by wind shear. AIRS data was captured on Jan. 10 at 0623 UTC; Jan. 11 at 1759 UTC; Jan. 12 at 0605 UTC; Jan. 13 at 0647 UTC; Jan. 14 at 0553 UTC; and Jan. 15 at 0635 UTC.

The Joint Typhoon Warning Center issued their final warning on Narelle on Jan. 14 at 2100 UTC (8 p.m. EST/U.S.). At that time Narelle's maximum sustained winds were near 35 knots (40 mph/64.8 kph), and it had become extra-tropical. The center was located near 29.9 south latitude and 110.2 east longitude. It was moving to the south at 18 knots (20.7 mph/33.3 kph).

On Jan. 15, wind shear had taken its toll on Narelle, and had blown the storm apart. AIRS infrared imagery from NASA's Aqua satellite on Jan. 15 showed that Narelle's remnants appeared more like a paint brush stroke from north to southeast, with no discernable center. Narelle's remnants were south of Perth, near Cape Leeuwin where they are expected to dissipate.

As Narelle continues to dissipate, the Australian Bureau of Meteorology maintained a strong wind warning for the following areas: Perth Local Waters, Lancelin Coast, Perth Coast and Bunbury Geographe Coast.

Narelle was the second cyclone to the form in the southern Indian Ocean this year. Cyclone Dumile passed east of Madagascar the first week of the year--and the fourth of the season. Typically there are about 9 tropical storms per season in the southern Indian Ocean, which runs year round from July through June.

Text credit: Rob Gutro/Steve Lang
NASA's Goddard Space Flight Center, Greenbelt, Md./SSAI

Rob Gutro/Steve Lang | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Narelle.html

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>