Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see Cyclone Bingiza move across northern Madagascar

15.02.2011
Tropical Cyclone Bingiza has made landfall in northeastern Madagascar, and NASA's Aqua and Terra satellites captured visible infrared satellite data of the storm's progression over the weekend, revealing the power behind the storm.

The movement and landfall of Tropical Cyclone Bingiza was captured over the weekend of Feb. 12-13 in a series of infrared satellite imagery from the Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite. Aqua and Terra provided companion visible images to the infrared images of Bingiza's track across northern Madagascar.


This series of infrared satellite imagery from the AIRS instrument on NASA\'s Aqua satellite shows the progression of Tropical Cyclone Bingiza over the weekend of Feb. 12-13. On February 12 at 21:35 UTC, Bingiza\'s center was still at sea, and an eye was visible. On Feb. 13 at 0947 UTC, AIRS noticed the western edge of Bingiza over northeastern Madagascar and the storm appears to be expanding. On Feb. 13 at 22:17 UTC, Bingiza\'s center was on the northeastern coastline and it was making landfall. Credit: NASA/JPL, Ed Olsen

On February 12 at 21:35 UTC (4:35 p.m. EST or 12:35 a.m. on Feb. 13 Madagascar local time) Cyclone Bingiza's center was still at sea, and an eye was visible indicating that the cyclone had strengthened. Madagascar time is GMT time plus three hours. On Feb. 13 at 0947 UTC (4:47 EST) AIRS noticed the western edge of Bingiza was already bringing rainfall and gusty winds over northeastern Madagascar and the storm appeared to be expanding. A large band of thunderstorms had developed and were wrapped around the outer eastern edge of the cyclone at that time. On Feb. 13 at 22:17 UTC (5:17 p.m. EST), Bingiza's center was on the northeastern coastline and it was making landfall. The center of Cyclone Bingiza made landfall today, Feb. 14 at 0600 UTC (1 a.m. EST) after moving across the Masoala Peninsula and skirting Antongil Bay.

In all of these data, there were large areas of very cold cloud tops, as cold as or colder than -63 Fahrenheit (-52 Celsius). Those areas indicated strong thunderstorms, strong convection (rapidly rising air that forms those thunderstorms) and heavy rainfall.

Today, Feb. 14 at 0900 UTC (4 a.m. EST), Cyclone Bingiza had maximum sustained winds of 85 knots (98 mph / 157 kmh) over land. It was located about 250 nautical miles (287 miles/463 km) northeast of Antananarivo, Madagascar, near 16.0 South and 49.3 East. It was moving westward near 8 knots (9 mph/15 kmh).

Currently there are warnings posted for Malagasy. Heavy rainfall is expected to be the main hazard for northern Madagascar.

This morning's (Feb. 14) infrared AIRS satellite image from 10:23 UTC (5:23 a.m. EST) shows northern Madagascar covered by the storm. It also showed that Bingiza remained well-organized with tightly-curved convective thunderstorm banding wrapping into a well-defined low-level circulation center. It continues to draw energy from the warm waters of the Southern Indian Ocean.

Although the storm was still at hurricane strength at that time, no eye was visible in the infrared image. The strongest thunderstorms and coldest (-63F/-52C), highest cloud tops were over north central Madagascar and over the Mozambique Channel. The imagery also showed that the western edge of Bingiza was already over the Mozambique Channel. AIRS images are created at NASA's Jet Propulsion Laboratory, in Pasadena, Calif.

At NASA's Goddard Space Flight Center in Greenbelt, Md. the MODIS Rapid Response Team created visible images of Bingiza on Feb. 13 and 14. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Terra and Aqua satellites captured two images of Cyclone Bingiza before and after it crossed northern Madagascar on Feb. 13 and 14 respectively. The image on Feb. 13 showed an eye in the storm's center which disappeared after Bingiza made landfall.

The forecasters at the Joint Typhoon Warning Center expect Bingiza to continue tracking west-southwestward over land over the next 36 hours while rapidly weakening. The storm is expected to track over northern Madagascar and by Feb. 16 it will move into the Mozambique Channel where it is expected to regenerate in the warm waters (30 degrees Celsius) and low wind shear. Once in the Channel, forecasters expect that it will be steered southwestward to southward.

Forecasts currently differ on the end Bingiza's life. Some models predict a second landfall in southern Madagascar right now, while others keep the storm at sea.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>