Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites Analyze Typhoon Bopha Inside and Out

06.12.2012
Typhoon Bopha proved deadly to residents in the Mindanao region of the Philippines after ravaging islands in Micronesia. NASA's Aqua and TRMM satellites peered at the storm inside and out, providing forecasters with valuable data as the storm moved into the South China Sea.

On Dec. 5, 2012, Bopha crossed over Palawan and entered the South China Sea after crossing over the southern Philippines' Mindanao region, leaving death and destruction in its wake. According to Reuters news reports on Dec. 5, at least at total of 283 people were killed and hundreds remain missing in the Philippines. The hardest-hit province in Mindanao was Compostela, where flood waters and mudslides swept through the town and killed at least 150 people. Homes were destroyed, roads were flooded and washed out, and it was estimated that as much as 80 percent of plantations were destroyed.

On Dec. 2, 2012, NASA and the Japanese Space Agency's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Super Typhoon Bopha. Data from the overpass was used to create a 3-D image that showed that the inner eyewall was being replaced by an outer eyewall, something that typically happens in major typhoons. There was also a "hot tower" thunderstorm reaching 12 kilometers (7.4 miles) high, located north of the center of circulation. NASA research indicates that whenever a "hot tower" is spotted in a tropical cyclone, the storm usually intensifies within 6 hours. The data also indicated the highest, most powerful thunderstorms were around the center where cloud top temperatures were as cold as -90 Celsius (-130F).

On Dec. 5 at 0517 UTC (12:17 a.m. EST), the Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite captured an infrared view of Typhoon Bopha's cloud-top temperatures as it was exiting Palawan and moving into the South China Sea. The AIRS data identified areas of bitterly cold cloud-top temperatures of 210 kelvin (-63C/-81F) where the strongest thunderstorms, with highest cloud tops, and heaviest rainfall were found. One area was located over the South China Sea and the other over northern Palawan at the time of the image.

Three minutes later, another instrument aboard Aqua captured a visible image of Typhoon Bopha. The image revealed that Bopha's clouds covered the entire island of Palawan, and where the AIRS instrument revealed the coldest cloud top temperatures, those areas of clouds appeared the brightest white in the visible image, because they were higher than the surrounding clouds, and cast shadows on the lower clouds. The strongest thunderstorms have waned around the center of circulation during the early part of Dec. 5, although a tightly curved band of thunderstorms remained along the western and northern quadrants.

On Dec. 5 at 1500 UTC (10 a.m. EST) Bopha's maximum sustained winds were near 75 knots (86 mph/139 kph). It was located near 11.5 north latitude and 117.4 east longitude, about 270 nautical miles southwest of Manila, Philippines. Bopha is moving to the northwest near 11 knots (12.6 mph/20 kph) and is expected to slow down in the South China Sea.

Bopha is expected to continue tracking generally west-northwest into the South China Sea and become quasi-stationary over the next couple of days.

Text credit: Rob Gutro, NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Bopha.html#9

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>