Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites Analyze Typhoon Bopha Inside and Out

06.12.2012
Typhoon Bopha proved deadly to residents in the Mindanao region of the Philippines after ravaging islands in Micronesia. NASA's Aqua and TRMM satellites peered at the storm inside and out, providing forecasters with valuable data as the storm moved into the South China Sea.

On Dec. 5, 2012, Bopha crossed over Palawan and entered the South China Sea after crossing over the southern Philippines' Mindanao region, leaving death and destruction in its wake. According to Reuters news reports on Dec. 5, at least at total of 283 people were killed and hundreds remain missing in the Philippines. The hardest-hit province in Mindanao was Compostela, where flood waters and mudslides swept through the town and killed at least 150 people. Homes were destroyed, roads were flooded and washed out, and it was estimated that as much as 80 percent of plantations were destroyed.

On Dec. 2, 2012, NASA and the Japanese Space Agency's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Super Typhoon Bopha. Data from the overpass was used to create a 3-D image that showed that the inner eyewall was being replaced by an outer eyewall, something that typically happens in major typhoons. There was also a "hot tower" thunderstorm reaching 12 kilometers (7.4 miles) high, located north of the center of circulation. NASA research indicates that whenever a "hot tower" is spotted in a tropical cyclone, the storm usually intensifies within 6 hours. The data also indicated the highest, most powerful thunderstorms were around the center where cloud top temperatures were as cold as -90 Celsius (-130F).

On Dec. 5 at 0517 UTC (12:17 a.m. EST), the Atmospheric Infrared Sounder (AIRS) instrument that flies aboard NASA's Aqua satellite captured an infrared view of Typhoon Bopha's cloud-top temperatures as it was exiting Palawan and moving into the South China Sea. The AIRS data identified areas of bitterly cold cloud-top temperatures of 210 kelvin (-63C/-81F) where the strongest thunderstorms, with highest cloud tops, and heaviest rainfall were found. One area was located over the South China Sea and the other over northern Palawan at the time of the image.

Three minutes later, another instrument aboard Aqua captured a visible image of Typhoon Bopha. The image revealed that Bopha's clouds covered the entire island of Palawan, and where the AIRS instrument revealed the coldest cloud top temperatures, those areas of clouds appeared the brightest white in the visible image, because they were higher than the surrounding clouds, and cast shadows on the lower clouds. The strongest thunderstorms have waned around the center of circulation during the early part of Dec. 5, although a tightly curved band of thunderstorms remained along the western and northern quadrants.

On Dec. 5 at 1500 UTC (10 a.m. EST) Bopha's maximum sustained winds were near 75 knots (86 mph/139 kph). It was located near 11.5 north latitude and 117.4 east longitude, about 270 nautical miles southwest of Manila, Philippines. Bopha is moving to the northwest near 11 knots (12.6 mph/20 kph) and is expected to slow down in the South China Sea.

Bopha is expected to continue tracking generally west-northwest into the South China Sea and become quasi-stationary over the next couple of days.

Text credit: Rob Gutro, NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Bopha.html#9

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>