Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite tracks ozone pollution by monitoring its key ingredients

07.11.2017

Ozone pollution near Earth's surface is one of the main ingredients of summertime smog. It is also not directly measurable from space due to the abundance of ozone higher in the atmosphere, which obscures measurements of surface ozone. New NASA-funded research has devised a way to use satellite measurements of the precursor gases that contribute to ozone formation to differentiate among three different sets of conditions that lead to its production. These observations may also assist air quality managers in assessing the most effective approaches to emission reduction programs that will improve air quality.

Unlike its presence at high altitude where ozone acts as Earth's sunscreen from harmful ultraviolet radiation, at low altitudes, ozone is a health hazard contributing to respiratory problems like asthma and bronchitis.


The top row of images show each region in 2005, which had abundant NOx in urban areas where human emissions are high, leading to systems where ozone formation was controlled by VOC amounts. As pollution controls were put into place on NOx emissions, by 2015, the systems in Europe, the United States, and East Asian urban areas became limited by NOx, meaning that further controls on NOx would help reduce ozone formation. With the industrial growth of the last decade, the results in China outside the major cities show an increase in areas transitioning to being controlled by VOC amounts.

Credit: NASA

It is formed through complex chemical reactions initiated by sunlight and involving two types of gases, volatile organic compounds (VOC) and nitrogen oxides (NOx). Both are represented in the study by a major gas of each type, the VOC formaldehyde and NO2, that are measureable from space by the Dutch-Finnish Ozone Monitoring Instrument aboard NASA's Aura satellite, launched in 2004.

"We're using satellite data to analyze the chemistry of ozone from space," said lead author Xiaomeng Jin at the Lamont-Doherty Earth Observatory at Columbia University in Palisades, New York. Their research was published in Journal of Geophysical Research: Atmospheres, a publication of the American Geophysical Union.

With a combination of computer models and space-based observations, she and her colleagues used the concentrations of ozone's precursor molecules to infer whether ozone production increases more in the presence of NOx, VOCs, or a mix of the two, for a given location. Their study regions focused on North America, Europe and East Asia during the summer months, when abundant sunlight triggers the highest rates of ozone formation.

To understand their impact on ozone formation, Jin and her team investigated whether VOC or NOx was the ingredient that most limited ozone formation. If emissions of that molecule are reduced, then ozone formation will be reduced -- critical information for air quality managers.

"We are asking, 'If I could reduce either VOCs or NOx, which one is going to get me the biggest bang for my buck in terms of the amount of ozone that we can prevent from being formed in the lower atmosphere?'" said co-author and atmospheric chemist Arlene Fiore at Lamont-Doherty, who is also a member of NASA's Health and Air Quality Applied Sciences Team that partially funded this work and fosters collaboration between scientists and air quality managers.

The findings show that cities in North America, Europe and East Asia, are more often VOC-limited or in a transitional state between VOC and NOx-limited. In addition, the 12-year data record of satellite observations show that a location's circumstances can change. For instance, in 2005 New York City's ozone production during the warm season was limited by VOCs, but by 2015 it had transitioned to a NOx-limited system due to reduced NOx emissions resulting from controls put into place at both regional and national levels. This transition means that future NOx reductions will likely further decrease ozone production, said Jin.

Volatile organic compounds occur in high volume naturally, given off by some plants, including certain tree species. They can also arise from paint fumes, cleaning products, and pesticides, and are a by-product of burning fossil fuels in factories and automobiles. Nitrogen oxides are a byproduct of burning fossil fuels and are abundant in cities, produced by power plants, factories, and cars. Because VOCs have a large natural source during summer over the eastern United States, for example, emission reduction plans over the last two decades in this region have focused on NOx, which is overwhelmingly produced by human activities.

Space-based methods for monitoring ozone chemistry complement surface-based measurements made by air quality management agencies. The view from space offers consistent coverage of broad areas, and provides data for regions that may not have ground stations.

###

To read the paper, visit: http://onlinelibrary.wiley.com/doi/10.1002/2017JD026720/abstract

This work was a collaboration of researchers at Lamont-Doherty with those at University of Rochester in New York; the Royal Netherlands Meteorological Institute in De Bilt, Netherlands; Wageningen University in Wageningen, Netherlands; Belgian Institute for Space Aeronomy in Brussels, Belgium; Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; the U.S. Environmental Protection Agency Office of Research and Development in Research Triangle Park in North Carolina and its Region 8 Office in Denver Colorado; and NASA's Goddard Space Flight Center in Greenbelt, Maryland.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Warm air helped make 2017 ozone hole smallest since 1988
03.11.2017 | NASA/Goddard Space Flight Center

nachricht Newly discovered volcanic rock minerals may offer new insights into earth's evolution
03.11.2017 | Louisiana State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

A new concept for a unidirectional waveguide

07.11.2017 | Physics and Astronomy

Beyond good vibrations: New insights into metamaterial magic

07.11.2017 | Physics and Astronomy

NASA satellite tracks ozone pollution by monitoring its key ingredients

07.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>