Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA satellite sees System 91S undeveloped in Mozambique Channel

The Tropical Rainfall Measuring Mission or TRMM satellite that observed the tropical low pressure area designated as System 91S earlier this week captured another look at a much weaker storm on January 30. Wind shear has now increased in the region, and the development chances for the tropical low pressure area have dropped.

At 800 UTC/3 a.m. EST, the center of System 91S was located near 18.2 south latitude and 39.1 east longitude, about 370 nautical miles northeast of Maputo, Mozambique (which is in the southernmost part of the country).

TRMM passed over System 91S on Jan. 30 at 0820 UTC/3:20 a.m. EST and captured rainfall data on the low. The heaviest rainfall rates were occurring over the waters of the Mozambique Channel (yellow/orange).


TRMM passed over System 91S on January 30 at 0820 UTC/3:20 a.m. EST and captured rainfall data on the low. The heaviest rainfall rates were occurring over the waters of the Mozambique Channel, where rain was falling in one area at about 1 inch/25 mm per hour.

Other rainfall from the system was light. The U.S. Naval Research Laboratory overlaid TRMM rainfall imagery on top of visible imagery from Europe's METEO-7 satellite to provide a full picture of the low. The center appeared to be in the western Channel, while the heaviest rainfall was occurring in the eastern Channel.

Animated multispectral satellite imagery shows that the low-level center is elongating as a result of wind shear. A ridge of high pressure located southwest of System 91S is creating moderate wind shear (20 to 25 knots/37.0 to 46.3 kph/23.0 to 28.7 mph) hampering development.

Forecasters at the Joint Typhoon Warning Center have dropped the chances for System 91S to a low chance for potential for tropical development in the next day or two.

Rob Gutro | EurekAlert!
Further information:

Further reports about: 91S Mozambique NASA TRMM satellite heaviest rainfall wind shear

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>