NASA satellite measures monstrous Hurricane Igor as a '10-hour drive'

This image of Hurricane Igor was captured from the Moderate Resolution Imaging Spectroradiometer (MODIS) Instrument that flies aboard NASA\'s Terra satellite at 1420 UTC (10:20 a.m. EDT) on Sept. 14. The storm is 550 miles and would take 10 hours to \"drive across.\"<br><br>Credit: NASA Goddard/MODIS Rapid Response<br>

Because Hurricane Igor is a large storm and even if Igor doesn't make a direct landfall in Bermuda, the extent of the winds (the wind field) is so large that the National Hurricane Center noted that Bermuda can be buffeted by winds of hurricane-force or tropical storm-force on its current track.

Maximum sustained winds this morning were near 145 mph, and although the hurricane-force winds extend outward from the center up to 45 miles (90 miles in diameter), tropical-storm-force winds extend as far as 225 miles (550 miles in diameter). Igor is expected to be close to Bermuda within the next 3 to 4 days.

Hurricane Igor was captured in one image from the Moderate Resolution Imaging Spectroradiometer (MODIS) Instrument that flies aboard NASA's Terra satellite at 1420 UTC (10:20 a.m. EDT) on Sept. 14. The image showed the massive extent of Igor's cloud cover, stretching over 500 miles. The image also showed that Igor's eye was covered with high clouds.

At 5 a.m. EDT on Sept. 15, infrared imagery from NASA's Atmospheric Infrared Sounder (AIRS) instrument indicated that the cloud tops had warmed over the western part of the center, and that Igor's eye had cooled. That indicates slight weakening, because higher, colder cloud tops indicate strong convection (rapidly rising air that forms the thunderstorms that power Igor) and when they warm that means that convection has waned. Infrared imagery from AIRS on Sept. 14 at 1723 UTC (1:23 p.m. EDT) continued to show strong convective activity in his center as indicated by high thunderstorms that were as cold as -63F. Since that time, cloud tops have warmed.

At 0352 UTC this morning (11:52 p.m. EDT Sept. 14) NASA's Tropical Rainfall Measuring Mission satellite showed that the southwestern part of the eyewall has eroded, further confirming the weakening that the infrared data showed. However, the National Hurricane Center noted that Igor is still in a good environment for strengthening.

On Sept. 15 at 5 a.m. EDT, Hurricane Igor was still a powerful Category 4 hurricane on the Saffir-Simpson scale with maximum sustained winds of 145 mph. It was about 1,090 miles southeast of Bermuda, near 19.5 North and 54.5 West. Igor was moving west-northwest near 10 mph and had a minimum central pressure of 935 millibars.

Igor is expected to run into southerly wind shear in 3 to 4 days, which may cause some weakening. NASA satellites will watch for those signs as Igor continues moving through the Atlantic Ocean this week.

Media Contact

Rob Gutro EurekAlert!

More Information:

http://www.nasa.gov

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors