Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellite Improves Pollution Monitoring

26.07.2010
NASA scientists improved watershed pollution monitoring models by incorporating satellite and ground-based observations of precipitation. The NASA data replaces weather station observations, and will allow states to monitor non-point pollution and improve water quality.

The research team, led by Joseph Nigro of Science Systems and Applications, Inc., incorporated two NASA products into a computer program in BASINS (Better Assessment Science Integrating Nonpoint Sources) that calculates streamflow rates and pollution concentrations.

The current model uses meteorological data from weather stations, which can miss precipitation events and cause errors in modeling water quality. With better precipitation data, scientists will be able to obtain better estimates of the amount of pollution a body of water can carry before it is determined to be “polluted.”

The study revealed that both NASA products dramatically improved water quality model performance over the default weather stations. Both systems improved model performance but neither one was consistently better than the other. The NASA data systems were better able to capture the effects of water flow during storm periods that occur frequently in the summer months. This is due to the seamless coverage of the datasets as opposed to a single weather station that cannot represent all precipitation events in a given watershed.

The two data products that were selected for this study are the NASA-modified North American Land Data Assimilation System (NLDAS) 1/8th degree precipitation and the Stage IV 4-kilometer dataset developed by the NOAA River Forecast Center Multisensor Precipitation Estimator. The results from the study were reported in the July-August 2010 issue of the Journal of Environmental Quality, published by the America Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

The researchers selected seven watersheds within the Chesapeake Bay drainage basin to test the NASA-modified products. They were selected based on their dispersed locations within the drainage basin, an absence of reservoirs or diversions, and the presence of water quality data. Each watershed was also selected based on whether it represented a specific topographic and land cover/land use, so that the study could be conducted within a range of elevations and land cover types to understand how these variations affect the results.

The U.S. Environmental Protection Agency (EPA) estimates that over 20,000 water bodies within the United States do not meet water quality standards. The models that this research aims to improve are designed to assessing pollution and to guide the decision making process for improving water quality. The 1972 Clean Water Act requires states to monitor the total daily load a body of water can carry before it is considered polluted.

Although states may also monitor water quality with in-stream measuring and sampling, some states lack the resources to assess and protect water bodies with monitoring data alone. Models are a practical solution by taking into account the response of streams to storm runoff and pollution.

NASA is currently working with Aqua Terra Consultants, the Goddard Earth Sciences Data and Information Services Center, and the EPA to incorporate precipitation data access within the BASINS model, providing users with an alternative dataset. This will be especially valuable for data sparse areas and in cases where the nearest weather station is many kilometers outside of the watershed. In time, this could also expand the potential use of BASINS to parts of the world without good meteorological data. This study was funded by the NASA Applied Sciences Program.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/39/4/1388.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org

More articles from Earth Sciences:

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>