Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellite Improves Pollution Monitoring

26.07.2010
NASA scientists improved watershed pollution monitoring models by incorporating satellite and ground-based observations of precipitation. The NASA data replaces weather station observations, and will allow states to monitor non-point pollution and improve water quality.

The research team, led by Joseph Nigro of Science Systems and Applications, Inc., incorporated two NASA products into a computer program in BASINS (Better Assessment Science Integrating Nonpoint Sources) that calculates streamflow rates and pollution concentrations.

The current model uses meteorological data from weather stations, which can miss precipitation events and cause errors in modeling water quality. With better precipitation data, scientists will be able to obtain better estimates of the amount of pollution a body of water can carry before it is determined to be “polluted.”

The study revealed that both NASA products dramatically improved water quality model performance over the default weather stations. Both systems improved model performance but neither one was consistently better than the other. The NASA data systems were better able to capture the effects of water flow during storm periods that occur frequently in the summer months. This is due to the seamless coverage of the datasets as opposed to a single weather station that cannot represent all precipitation events in a given watershed.

The two data products that were selected for this study are the NASA-modified North American Land Data Assimilation System (NLDAS) 1/8th degree precipitation and the Stage IV 4-kilometer dataset developed by the NOAA River Forecast Center Multisensor Precipitation Estimator. The results from the study were reported in the July-August 2010 issue of the Journal of Environmental Quality, published by the America Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

The researchers selected seven watersheds within the Chesapeake Bay drainage basin to test the NASA-modified products. They were selected based on their dispersed locations within the drainage basin, an absence of reservoirs or diversions, and the presence of water quality data. Each watershed was also selected based on whether it represented a specific topographic and land cover/land use, so that the study could be conducted within a range of elevations and land cover types to understand how these variations affect the results.

The U.S. Environmental Protection Agency (EPA) estimates that over 20,000 water bodies within the United States do not meet water quality standards. The models that this research aims to improve are designed to assessing pollution and to guide the decision making process for improving water quality. The 1972 Clean Water Act requires states to monitor the total daily load a body of water can carry before it is considered polluted.

Although states may also monitor water quality with in-stream measuring and sampling, some states lack the resources to assess and protect water bodies with monitoring data alone. Models are a practical solution by taking into account the response of streams to storm runoff and pollution.

NASA is currently working with Aqua Terra Consultants, the Goddard Earth Sciences Data and Information Services Center, and the EPA to incorporate precipitation data access within the BASINS model, providing users with an alternative dataset. This will be especially valuable for data sparse areas and in cases where the nearest weather station is many kilometers outside of the watershed. In time, this could also expand the potential use of BASINS to parts of the world without good meteorological data. This study was funded by the NASA Applied Sciences Program.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/39/4/1388.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>