Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Satellite Finds an Unusually Tall Storm-cell in Cyclone Evan

NASA's Tropical Rainfall Measuring Mission or TRMM satellite found an unusually tall towering thunderstorm in Cyclone Evan.

According to Owen Kelley of the TRMM satellite team at NASA's Goddard Space Flight Center in Greenbelt, Md, the most startling feature of the December 16 overflight of Tropical Cyclone Evan was the extremely tall storm-cell in the north side of the eyewall. At the time TRMM passed overhead and captured an image of the storm, Evan was about to rake across the northern coast of the islands of Fiji.

TRMM captured data on Cyclone Evan's cloud heights and rainfall on Dec. 16 and spotted an extremely tall storm-cell in the north side of the eyewall. The updrafts in this tower extended high enough to lift precipitation-size ice 17 km above the ocean surface (red in the image). The insert shows the infrared cloud top temperatures. The clockwise arrow shows the direction of the winds circling the eyewall. At the north side of the eyewall, the explosive circular shape is the upper-level outflow from the extremely tall tower, Credit: NASA/Owen Kelley

The updrafts in this tower extended high enough to lift precipitation-size ice 17 km (10.5 miles) above the ocean surface. Tall precipitation cells are generally taken to be anything at least 14.5 km (9 miles) high and are nicknamed "hot towers," but what was seen in Evan's eyewall was a different category of storm cell.

Storm-cells as tall as the one in the eyewall of Evan have been long known to occur occasionally over land, but before the TRMM satellite, there were not thought to occur over ocean far from land. While field campaigns have periodically studied one location or other over the ocean, what TRMM has taught us is that such sporadic observations are insufficient if you want catch rare events. After 15 years of continuous operation, TRMM satellite reveals the rare features and challenges our understanding of how the weather works. The ocean is an unlikely place to find extremely tall oceanic cells because the ocean surface stays roughly constant in temperature, unlike the land which quickly heats up over the course of a day, increasing low-level instability, and encouraging tall cells to form.

During the first 10 years of the TRMM mission, only 5 thunderstorm cells as tall as the one seen in cyclone Evan were observed in South Pacific tropical cyclones. Due to their rarity, perhaps these 17-km-tall (10.5 mile) cells deserve their own nickname. To distinguish them from run-of-the-mill hot towers, one can call these cells "titans," "super towers," or just extremely tall.

Over all of the tropical oceans, only 174 such extremely tall cells were observed during the first 10 years of TRMM (1). That's 174 extremely tall cells out of the approximately 9 million oceanic storms that TRMM saw during that time. It is worth noting however, that even TRMM has its limitations. It does not observe the whole earth continuously and frequently misses short-lived events. With this in mind, these extremely tall cells most likely occur more often than TRMM observes them although they do make up a very small fraction of the ocean's weather.

TRMM also observed cloud top temperatures. At the north side of the eyewall, was the upper-level outflow from the extremely tall tower, i.e. the tower's "exhaust fumes." The exhaust moves outward horizontally in every direction, including toward the eye at the center of the tropical cyclone. It is through a process called "forced subsidence" that the exhaust from eyewall towers may warm the air in the tropical cyclone's eye. Warming the air in the eye lowers the surface pressure and encourages intensification of the winds circling the eye.

The TRMM satellite is a joint mission between the United States and Japan.

Text Credit: Owen Kelley
NASA's Goddard Space Flight Center

Owen Kelley | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>