Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Sees Powerful Towering Storms in Cristobal

28.08.2014

NASA's TRMM satellite identified areas of heavy rainfall occurring in Hurricane Cristobal as it continued strengthening on approach to Bermuda.

NASA's Tropical Rainfall Measuring Mission or TRMM satellite flew above Hurricane Cristobal on August 26 at 11:35 UTC (7:35 a.m. EDT) gathering rainfall data. A rainfall analysis derived from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data instruments were overlaid on visible/infrared image from NOAA's GOES-East satellite to create a total picture of the storm.


On Aug. 26, NASA's TRMM Satellite saw a band of thunderstorms with heights of over 15km (about 9.3 miles) and was generating heavy rain. That band was wrapping into the center of Cristobal.

Image Credit: NASA/SSAI, Hal Pierce

The image was made at NASA's Goddard Space Flight Center in Greenbelt, Maryland. NASA and the Japan Aerospace Exploration Agency manage TRMM.

When TRMM captured that rainfall data, Cristobal was a category one hurricane with sustained winds estimated to be slightly above 65 knots (about 75 mph). Cristobal didn't have a clearly defined eye because vertical wind shear was still affecting the tropical cyclone's appearance and pushing clouds and storms away from the center.

TRMM PR and TMI rainfall data found heavy rain to the northeast of Cristobal's center and in intense convective storms within a feeder band streaming in from the southwest. Some of the powerful storms in the feeder band were found by TRMM PR to be dropping rain at a rate of 133.8 mm (5.2 inches) per hour.

TRMM's Precipitation Radar (PR) reflectivity data were used to create a 3-D view of precipitation within the feeder band (band of thunderstorms wrapping into the center) south of Cristobal's center. Those data showed that some energetic storms in this band were reaching heights of over 15km (about 9.3 miles) and were generating heavy rain. 

Satellite imagery on August 27 showed some strong thunderstorms had redeveloped near the center of Cristobal mainly in the western semicircle.  Satellite imagery also showed that dry air was wrapping south and east of the center.

At 11 a.m. EDT on Wednesday, August 27, Cristobal's maximum sustained winds were near 80 mph (130 kph) and some strengthening is possible. It was centered near latitude 31.8 north and longitude 72.2 west. That puts the center of Cristobal about 435 miles (700 km) west of Bermuda and even closer to Cape Hatteras, North Carolina at 300 miles (485 km) to the Cape's southeast.

Cristobal has a large wind field where hurricane force winds extend outward from the center up to 60 miles (95 km) and tropical storm force winds extend outward up to 205 miles (335 km). The estimated minimum central pressure is 983 millibars.

Cristobal is moving toward the north near 12 mph (19 kph) and the National Hurricane Center (NHC) expects a turn to the northeast. NHC noted that the center of Cristobal will pass well northwest of Bermuda late on August 27 and stay away from the U.S. and Canadian mainland on its track to the North Atlantic Ocean. 

Cristobal is expected to become a powerful extra-tropical cyclone over the north Atlantic by Friday, August 29.

Text credit:  Hal Pierce/Rob Gutro
SSAI/NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/cristobal-atlantic-ocean/

Further reports about: Flight NASA Powerful Radar Space hurricane rainfall satellite storms thunderstorms winds

More articles from Earth Sciences:

nachricht Crucial peatlands carbon-sink vulnerable to rising sea levels
29.06.2016 | University of Exeter

nachricht ChemCam findings hint at oxygen-rich past on Mars
28.06.2016 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

The large-scale stability of chromosomes

29.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>