Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Sees Powerful Towering Storms in Cristobal

28.08.2014

NASA's TRMM satellite identified areas of heavy rainfall occurring in Hurricane Cristobal as it continued strengthening on approach to Bermuda.

NASA's Tropical Rainfall Measuring Mission or TRMM satellite flew above Hurricane Cristobal on August 26 at 11:35 UTC (7:35 a.m. EDT) gathering rainfall data. A rainfall analysis derived from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data instruments were overlaid on visible/infrared image from NOAA's GOES-East satellite to create a total picture of the storm.


On Aug. 26, NASA's TRMM Satellite saw a band of thunderstorms with heights of over 15km (about 9.3 miles) and was generating heavy rain. That band was wrapping into the center of Cristobal.

Image Credit: NASA/SSAI, Hal Pierce

The image was made at NASA's Goddard Space Flight Center in Greenbelt, Maryland. NASA and the Japan Aerospace Exploration Agency manage TRMM.

When TRMM captured that rainfall data, Cristobal was a category one hurricane with sustained winds estimated to be slightly above 65 knots (about 75 mph). Cristobal didn't have a clearly defined eye because vertical wind shear was still affecting the tropical cyclone's appearance and pushing clouds and storms away from the center.

TRMM PR and TMI rainfall data found heavy rain to the northeast of Cristobal's center and in intense convective storms within a feeder band streaming in from the southwest. Some of the powerful storms in the feeder band were found by TRMM PR to be dropping rain at a rate of 133.8 mm (5.2 inches) per hour.

TRMM's Precipitation Radar (PR) reflectivity data were used to create a 3-D view of precipitation within the feeder band (band of thunderstorms wrapping into the center) south of Cristobal's center. Those data showed that some energetic storms in this band were reaching heights of over 15km (about 9.3 miles) and were generating heavy rain. 

Satellite imagery on August 27 showed some strong thunderstorms had redeveloped near the center of Cristobal mainly in the western semicircle.  Satellite imagery also showed that dry air was wrapping south and east of the center.

At 11 a.m. EDT on Wednesday, August 27, Cristobal's maximum sustained winds were near 80 mph (130 kph) and some strengthening is possible. It was centered near latitude 31.8 north and longitude 72.2 west. That puts the center of Cristobal about 435 miles (700 km) west of Bermuda and even closer to Cape Hatteras, North Carolina at 300 miles (485 km) to the Cape's southeast.

Cristobal has a large wind field where hurricane force winds extend outward from the center up to 60 miles (95 km) and tropical storm force winds extend outward up to 205 miles (335 km). The estimated minimum central pressure is 983 millibars.

Cristobal is moving toward the north near 12 mph (19 kph) and the National Hurricane Center (NHC) expects a turn to the northeast. NHC noted that the center of Cristobal will pass well northwest of Bermuda late on August 27 and stay away from the U.S. and Canadian mainland on its track to the North Atlantic Ocean. 

Cristobal is expected to become a powerful extra-tropical cyclone over the north Atlantic by Friday, August 29.

Text credit:  Hal Pierce/Rob Gutro
SSAI/NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/cristobal-atlantic-ocean/

Further reports about: Flight NASA Powerful Radar Space hurricane rainfall satellite storms thunderstorms winds

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>