Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Sees Powerful Towering Storms in Cristobal

28.08.2014

NASA's TRMM satellite identified areas of heavy rainfall occurring in Hurricane Cristobal as it continued strengthening on approach to Bermuda.

NASA's Tropical Rainfall Measuring Mission or TRMM satellite flew above Hurricane Cristobal on August 26 at 11:35 UTC (7:35 a.m. EDT) gathering rainfall data. A rainfall analysis derived from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data instruments were overlaid on visible/infrared image from NOAA's GOES-East satellite to create a total picture of the storm.


On Aug. 26, NASA's TRMM Satellite saw a band of thunderstorms with heights of over 15km (about 9.3 miles) and was generating heavy rain. That band was wrapping into the center of Cristobal.

Image Credit: NASA/SSAI, Hal Pierce

The image was made at NASA's Goddard Space Flight Center in Greenbelt, Maryland. NASA and the Japan Aerospace Exploration Agency manage TRMM.

When TRMM captured that rainfall data, Cristobal was a category one hurricane with sustained winds estimated to be slightly above 65 knots (about 75 mph). Cristobal didn't have a clearly defined eye because vertical wind shear was still affecting the tropical cyclone's appearance and pushing clouds and storms away from the center.

TRMM PR and TMI rainfall data found heavy rain to the northeast of Cristobal's center and in intense convective storms within a feeder band streaming in from the southwest. Some of the powerful storms in the feeder band were found by TRMM PR to be dropping rain at a rate of 133.8 mm (5.2 inches) per hour.

TRMM's Precipitation Radar (PR) reflectivity data were used to create a 3-D view of precipitation within the feeder band (band of thunderstorms wrapping into the center) south of Cristobal's center. Those data showed that some energetic storms in this band were reaching heights of over 15km (about 9.3 miles) and were generating heavy rain. 

Satellite imagery on August 27 showed some strong thunderstorms had redeveloped near the center of Cristobal mainly in the western semicircle.  Satellite imagery also showed that dry air was wrapping south and east of the center.

At 11 a.m. EDT on Wednesday, August 27, Cristobal's maximum sustained winds were near 80 mph (130 kph) and some strengthening is possible. It was centered near latitude 31.8 north and longitude 72.2 west. That puts the center of Cristobal about 435 miles (700 km) west of Bermuda and even closer to Cape Hatteras, North Carolina at 300 miles (485 km) to the Cape's southeast.

Cristobal has a large wind field where hurricane force winds extend outward from the center up to 60 miles (95 km) and tropical storm force winds extend outward up to 205 miles (335 km). The estimated minimum central pressure is 983 millibars.

Cristobal is moving toward the north near 12 mph (19 kph) and the National Hurricane Center (NHC) expects a turn to the northeast. NHC noted that the center of Cristobal will pass well northwest of Bermuda late on August 27 and stay away from the U.S. and Canadian mainland on its track to the North Atlantic Ocean. 

Cristobal is expected to become a powerful extra-tropical cyclone over the north Atlantic by Friday, August 29.

Text credit:  Hal Pierce/Rob Gutro
SSAI/NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/cristobal-atlantic-ocean/

Further reports about: Flight NASA Powerful Radar Space hurricane rainfall satellite storms thunderstorms winds

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>