Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Polar Robotic Ranger Passes First Greenland Test

09.07.2013
Defying 30 mph gusts and temperatures down to minus 22 F, NASA’s new polar rover recently demonstrated in Greenland that it could operate completely autonomously in one of Earth’s harshest environments.

The robot known as GROVER, which stands for both Greenland Rover and Goddard Remotely Operated Vehicle for Exploration and Research, was designed by teams of students attending engineering boot camps at Goddard in the summers of 2010 and 2011. Built to carry a ground-penetrating radar to analyze layers of snow and ice, the rover was later transferred to Boise State University for fine-tuning with NASA funding.


GROVER underwent a test of its power consumption at Greenland's highest spot, Summit Camp, on June 2, 2013.
Image Credit: NASA Goddard/Matt Radcliff

Although researchers had tested GROVER at a beach in Maryland and in the snow in Idaho, the May 6 to June 8 testing at Summit Camp, the highest spot in Greenland, was the rover’s first polar experience. One of the main goals was proving that the robot could execute commands sent from afar over an Iridium satellite connection – an objective GROVER accomplished.

“When we saw it moving and travelling to the locations our professor had keyed in from Boise, we knew all of our hard work had paid off,” said Gabriel Trisca, a graduate student from Boise State University who has been involved in the GROVER project from its start. “GROVER has grown to be a fully-autonomous, GPS-guided and satellite-linked platform for scientific research.” Trisca accompanied the robot to Greenland.

GROVER collected and stored radar data over 18 miles during the five weeks it spent on the ice. During the testing, the rover was also able to transmit information in real time on how its onboard systems were performing. The robot’s solar-charged batteries allowed it to operate for up to 12 hours before having to recharge.

"When you work at the poles, on the ice, it's cold, it's tiring, it's expensive and there's a limit to how much ground you can cover on snowmobiles," said Lora Koenig, a glaciologist at NASA’s Goddard Space Flight Center in Greenbelt, Md. "It would be great if autonomous robotic platforms could do part of this work -- especially the part where high winds and blowing snow try to freeze your skin.”

Though researchers had initially expected the 800-pound robot to work around the clock and cover more ground, the extreme polar conditions took a toll on GROVER’s electronics, battery consumption and mobility.

“This is very common the first time you take an instrument into an environment like Greenland,” said Hans-Peter Marshall, a geoscientist at Boise State University and science adviser on the project. “It’s always more challenging than you thought it was going to be: Batteries don’t recharge as fast and they don’t last as long, and it takes computers and instrumentation longer to boot.”

Another challenge was the uneven icy terrain. The researchers had to repeatedly tinker with the rover’s speed and the power sent to each of its two autonomous tracks so that the robot would not get stuck in the snow.

GROVER’s radar emits a signal that bounces off the different layers of the ice sheet, allowing scientists to study how snow and ice accumulates in Greenland. The team wanted to check whether the robot could see a layer in the ice sheet that formed after an extreme melt event in the summer of 2012. Marshall said a first analysis of GROVER’s radar data revealed it was sufficient to detect the melt layer and potentially estimate its thickness.

Though currently the radar information is stored onboard and retrieved afterward, the GROVER team wants to switch to a geostationary satellite connection that will let the robot transmit large volumes of data in real time. Other possible changes include replacing components that are hard to manipulate in the cold (like switches and wires), merging the two onboard computers to reduce energy consumption, and using wind generators to create more power or adding a sled carrying additional solar panels.

GROVER’s test in Greenland coincided with the field-testing of a smaller, non-autonomous and faster robot called CoolRobot, built by Dartmouth College. Marshall said that in the future, he would like to see the different science teams that are currently developing polar rovers work together to create a pool of robotic platforms, which glaciologists could borrow from for their studies.

“One thing I can imagine is having a big robot like GROVER with several smaller ones that can move radially outwards to increase the swath GROVER would cover,” Marshall said. “Also, we’ve been thinking about bringing back smaller platforms to a larger one to recharge.”

“An army of polar robots – that would be neat,” Koenig said.

Maria-José Viñas
NASA's Earth Science News Team

Maria-Jose Vinas | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>