Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's HS3 Mission Continues With Flights Over Hurricane Gonzalo

21.10.2014

Tropical Storm Gonzalo strengthened into a hurricane on Oct. 14 when it was near Puerto Rico and provided a natural laboratory for the next phase of NASA's HS3 or Hurricane and Severe Storm Sentinel mission.

The WB-57 aircraft flew over Hurricane Gonzalo on Oct. 15 carrying two HS3 mission instruments called HIWRAP and HIRAD in addition to a new Office of Naval Research sponsored dropsonde system. 


This image of Gonzalo is from NOAA's GOES-East satellite on Oct. 15 at 17:30 UTC (1:30 p.m. EDT).

Image Credit: NASA/NOAA GOES Project


The WB-57 can climb up to 54,000 feet, where Gonzalo's cirrus clouds will top off.

Image Credit: NASA Johnson

The WB-57 is a mid-wing, long-range aircraft capable of operation for extended periods of time from sea level to altitudes in excess of 60,000 feet. Two crew members are positioned at separate tandem stations in the forward section of the fuselage.  The WB-57 will fly for approximately 6 hours, has a range of approximately 2,500 miles, and can carry up to 8,800 pounds of payload.

The HIWRAP is the High-altitude Imaging Wind and Rain Airborne Profiler, a "conically scanning" Doppler radar, meaning it scans in a cone-shaped manner. Wind measurements are crucial for understanding and forecasting tropical storms since they are closely tied to the overall dynamics of the storm. The HIWRAP instrument is able to measure line-of-sight (along the radar beam) winds and rain and because it scans in a cone beneath the aircraft, it gets two looks at most parts of the storm, allowing calculations of the 3-D wind and rain fields. In the absence of rain, it can also measure ocean surface winds.

The Hurricane Imaging Radiometer (HIRAD) is a passive microwave radiometer that was developed at NASA's Marshall Space Flight Center, Huntsville, Alabama. HIRAD’s purpose is to map out where the strongest winds are in a hurricane. HIRAD provides unique observations of sea surface wind speed, temperature and rain. The data HIRAD gathers will advance understanding and predictability of hurricane intensity. HIRAD's data will also help better determine maximum wind speed and structure of the vortex (spinning center). The region of strongest winds are also much better observed with HIRAD than current capabilities.

The WB-57 aircraft is also testing a new dropsonde system developed by Yankee Environmental Systems. The WB-57's focus is on the upper-level outflow from storms and its connection to the inner-core region.

When the WB-57 investigated Gonzalo it was a Category 4 storm on the Saffir-Simpson Hurricane Scale. According to the National Hurricane Center, Gonzalo is the first category 4 hurricane in the Atlantic basin since Ophelia in 2011.

NOAA's GOES-East satellite captured a visible image of Gonzalo on Oct. 15 at 15:15 UTC (11:15 a.m. EDT) that showed the eye of the storm obscured by high clouds.

The National Hurricane Center noted that NOAA aircraft data and microwave images clearly showed concentric eyewalls, with the inner radius of maximum winds only about 4-5 nautical miles from the center. 

An image from the Special Sensor Microwave Imager (SSMI) aboard the Defense Meteorological Satellite Program (DMSP) F-15 satellite taken on Oct. 13 at 07:13 UTC (3:13 a.m. EDT) showed very tiny inner eyewall and a new secondary eyewall, concentric about the center.

At 11 a.m. EDT on Oct. 15, Gonzalo's maximum sustained winds increased to near 130 mph (215 kph) and the National Hurricane Center (NHC) noted that fluctuations in intensity were expected over the next couple of days. Gonzalo's cloud-covered eye was located near latitude 23.5 north and longitude 68.0 west, about 640 miles (1,025 km) south-southwest of Bermuda. Gonzalo was moving toward the northwest near 12 mph (19 kph). The minimum central pressure was reported by an Air Force reconnaissance aircraft was 949 millibars.

The WB-57 has been conducting science missions for the Office of Naval Research in September and will continue through October 2014.

The HS3 mission is funded by NASA Headquarters and overseen by NASA’s Earth System Science Pathfinder Program at NASA’s Langley Research Center in Hampton, Virginia. It is one of five large airborne campaigns operating under the Earth Venture program.

The HS3 mission also involves collaborations with partners including the National Centers for Environmental Prediction, Naval Postgraduate SchoolNaval Research LaboratoryNOAA’s Unmanned Aircraft System Program, Hurricane Research Division and Earth System Research LaboratoryNorthrop Grumman Space TechnologyNational Center for Atmospheric ResearchState University of New York at AlbanyUniversity of Maryland - Baltimore CountyUniversity of Wisconsin, and University of Utah. The HS3 mission is managed by the Earth Science Project Office at NASA Ames Research Center in Moffett Field, California. The WB-57 is housed at NASA's Johnson Space Center in Houston, Texas, home of the NASA WB-57 High Altitude Research Program.

For more information about the HIWRAP, visit:

https://airbornescience.nasa.gov/instrument/HIWRAP

For more information about the HIRAD, visit:

https://airbornescience.nasa.gov/instrument/HIRAD

For more information about the WB-57, visit:

https://airbornescience.nasa.gov/aircraft/WB-57.

Robert Gutro

NASA's Goddard Space Flight Center in Greenbelt, Maryland

Rob Gutro | Eurek Alert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>