Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's HS3 Looks Hurricane Edouard in the Eye

01.10.2014

NASA and NOAA scientists participating in NASA’s Hurricane and Severe Storms Sentinel (HS3) mission used their expert skills, combined with a bit of serendipity on Sept. 17, 2014, to guide the remotely piloted Global Hawk over the eye of Hurricane Edouard and release a sonde that rotated within the eye as it descended and fell into  the eyewall of the storm at low levels.

NASA’s HS3 mission has returned to NASA’s Wallops Flight Facility on the Eastern Shore of Virginia for the third year to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. 


This video shows two passes over Hurricane Edouard during the sixth science flight of NASA’s Global Hawk No. 872 using two of the onboard cameras. One pass is during the day, the second right after “moonrise.”

Image Credit: NASA's Armstrong Flight Research Center, David Fratello


This graph of data from a dropsonde on Sept. 17 shows very strong, hurricane-force winds at the surface of Hurricane Edouard.

Image Credit: NASA

NOAA’s Advanced Vertical Atmospheric Profiling System (AVAPS) aboard Global Hawk No. 872 released 88 dropsondes into the hurricane that measured temperature, humidity and winds throughout the depth of the troposphere, the region of the atmosphere where humans and aircraft experience weather.

During the Global Hawk’s seventh science flight on Sept. 17, “the remotely piloted aircraft released a dropsonde from 62,000 feet along the inner edge of the eyewall on a south to north pass,” said Michael L. Black, research meteorologist at the Hurricane Research Division, NOAA’s Office of Oceanic and Atmospheric Research - Atlantic Oceanographic and Meteorological Laboratory in Florida. 

Black said, “The sonde started out on the south side of the eye and rotated around to the eastern eyewall. The sonde reported a sea-level pressure of 963 millibars, surface winds of 90 knots [103.6 mph, or 166.7 kph], and average low-level winds of 95 knots.” 

The data showed that Eduoard was indeed still at least a strong Category 2 hurricane, possibly Category 3, as the strong winds continued to be observed near the ocean surface.

Basically, the dropsonde, along with 87 others during this flight, provided readings from top to bottom of the critical region of the atmosphere, giving scientists a perfect view of winds, temperature and pressure throughout the whole depth of the storm.

On Sept. 18, Global Hawk No. 872 took off at 7:15 a.m. EDT to return to investigate Eduoard as it moved over cooler Atlantic waters and was expected to weaken. This mission was the eighth science flight during the current campaign for the Global Hawk. During the flight, the Global Hawk ejected 50 dropsondes and observed the decay of Hurricane Edouard to tropical storm strength and recorded the beginning of the demise of the storm that included the decoupling from the mid- and low-level centers of the storm.  

Overall, the Global Hawk flights into Edouard documented its formation into a tropical storm, its rapid increase in intensity into a major, Category 3 storm, and its decay back to a tropical depression thereby capturing the life cycle of a classic hurricane with roots from a tropical wave from Africa.

The HS3 mission is funded by NASA Headquarters and overseen by NASA’s Earth System Science Pathfinder Program at NASA’s Langley Research Center in Hampton, Virginia. It is one of five large airborne campaigns operating under the Earth Venture program.

The HS3 mission also involves collaborations with partners including the National Centers for Environmental Prediction, Naval Postgraduate SchoolNaval Research LaboratoryNOAA’s Unmanned Aircraft System Program, Hurricane Research Division and Earth System Research LaboratoryNorthrop Grumman Space TechnologyNational Center for Atmospheric ResearchState University of New York at AlbanyUniversity of Maryland - Baltimore CountyUniversity of Wisconsin, and University of Utah. The HS3 mission is managed by the Earth Science Project Office at NASA Ames Research Center in Moffett Field, California. The aircraft are maintained and based at NASA’s Armstrong Flight Research Center in Edwards, California.

For more information about NASA’s HS3 mission, visit:  http://www.nasa.gov/hs3

Rob Gutro | Eurek Alert!

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>