Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Aqua satellite spots Tropical Cyclone Bansi intensifying quickly

13.01.2015

NASA's Aqua satellite passed over Tropical Cyclone Bansi on January 12 as it was intensifying rapidly and saw a cloud-covered eye in the storm's center. Bansi has triggered warnings for the island of Mauritius and is expected to continue intensifying while passing it.

On Sunday, January 11, Tropical Cyclone Bansi formed north of La Reunion Island in the Southern Indian Ocean and triggered two alerts. A tropical cyclone warning class I was posted at Mauritius, and a Yellow pre-alert went into effect for La Reunion Island. At 0900 UTC (4 a.m. EST) Tropical Cyclone Bansi (formerly System 92S) was located about 254 nautical miles north of St Denis, La Reunion Island. It was slowly moving to the east-southeast and had maximum sustained winds near 35 knots (40 mph/62 kph).


NASA's Aqua satellite captured this visible image of Tropical Cyclone Bansi off Madagascar on Jan. 12 at 10:10 UTC (5:10 a.m. EST).

Credit: NASA's Goddard MODIS Rapid Response Center

On January 11 at 06:40 UTC (1:40 a.m. EST) the MODIS instrument aboard NASA's Terra satellite captured an image of Tropical Cyclone Bansi. The MODIS image showed strong thunderstorms tightly wrapped around the center, and a large, wide band of thunderstorms in the storm's eastern quadrant spiraling around the storm and into the center from the west.

By January 12 at 10:10 UTC (5:10 a.m. EST) when the MODIS instrument aboard NASA's Aqua satellite passed overhead, the storm had rapidly consolidated and the bands of thunderstorms circling the center had expanded. Bands of thunderstorms spiraling around the storm wrapped around the storm from the northwest to the southeast and finally wrapping into the center from the west. The eye of the storm appeared covered by high clouds.

In Mauritius, the warnings on January 12 were changed to a tropical cyclone warning class 2. La Reunion, which lies to the southwest of Mauritius and is farther from the storm remained on Yellow pre-alert.

In less than 24 hours after it formed, Bansi strengthened from a minimal tropical storm into a major hurricane (Category 3) with maximum sustained winds. A Category three hurricane on the Saffir-Simpson wind scale has sustained winds from 111 to 129 mph (96 to 112 knots/178 to 208 kph).

At 0900 UTC (4 a.m. EST) on January 12, Bansi had maximum sustained winds near 100 knots (115.1. mph/185.2 kph). Bansi was centered near 17.2 south latitude and 56.1 east longitude, about 191 nautical miles (219.8 miles/ 353.7 km) north-northwest of Port Louis, Mauritius, has tracked eastward at 7 knots (8.0 mph/12.9 kph).

The Joint Typhoon Warning Center noted that Bansi continued to rapidly intensify as a result of passage over warm water, low vertical wind shear, and outflow aloft. A tropical cyclone needs good outflow (where winds spread out at the top of the hurricane) to maintain strength. Outflow means that air spreads out over the top of the storm assisting in its development. When outflow is weakened, the storm weakens.

Bansi is moving eastward along the southern edge of a near-equatorial ridge (elongated area) of high pressure. Bansi is forecast to continue moving to the east then southeast while strengthening to 125 knots before running into atmospheric conditions and cooler waters that will weaken it.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>