Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Provides Double Vision on Typhoon Matmo

23.07.2014

Two instruments aboard NASA's Aqua satellite provided different views of Typhoon Matmo on its approach to Taiwan today, July 22.

The Moderate Resolution Imaging Spectroradiometer or MODIS instrument snapped a visible picture of Typhoon Matmo's clouds on July 22 at 1:10 a.m. EDT.


On July 22, the MODIS instrument aboard NASA's Aqua satellite captured this visible image of Typhoon Matmo approaching Taiwan.

Image Credit: NASA Goddard MODIS Rapid Response Team


This false-colored infrared image on July 22 at 1:05 a.m. EDT from NASA's Aqua satellite shows a large area of powerful thunderstorms with high, cold (purple) cloud tops in Typhoon Matmo.

Image Credit: NASA JPL, Ed Olsen

The MODIS image showed a center obscured by clouds. Bands of thunderstorms wrapped tightly into the center of circulation, creating the signature comma shape of a mature tropical cyclone. At the time of the image, the center was southeast of the southeastern tip of Taiwan. The image also showed that the southernmost band of thunderstorms were affecting Luzon, in the northern Philippines.

The second instrument aboard Aqua captured infrared data that showed temperatures of clouds. The Atmospheric Infrared Sounder or AIRS instrument gathered infrared data that was false-colored at NASA's Jet Propulsion Laboratory in Pasadena, California and made into an image.

... more about:
»Atmospheric »EDT »Laboratory »NASA »Propulsion »Typhoon »Warning »clouds

The AIRS image also did not show an open eye in Matmo, but did show powerful thunderstorms with very cold cloud top temperatures wrapped tightly around the center. Matmo's northwestern side was already over eastern Taiwan, while the southwestern quadrant blanketed the northern Philippines.

By 1500 UTC (11 a.m. EDT), the Joint Typhoon Warning Center noted that radar data from Taiwan showed the eye had become more visible as the storm was making landfall on the country's east coast. Maximum sustained winds were near 85 knots (97.8 mph/157.4 kph).

Matmo was centered near 23.0 north latitude and 121.6 east longitude, about 158 nautical miles (181.8 miles/292.6 km) south of Taipei, Taiwan. Matmo was moving to the northwest at 9 knots (10.3 mph).   

Matmo is generating 30-foot (9.1 meter) high seas which means rough seas and dangerous swells for the east coast of Taiwan in addition to typhoon-force winds, heavy rainfall and flash flooding potential. The Taiwan Central Weather Bureau has issued warnings for the entire country. Those warnings can be seen on their website: http://www.cwb.gov.tw/.

The Joint Typhoon Warning Center (JTWC) expects the system to dissipate in two days but only after moving across Taiwan, moving into the Taiwan Strait and landfalling again in eastern China. Once Matmo exits Taiwan, the JTWC doesn't expect Matmo to strengthen before its second landfall.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/10w-northwest-pacific-ocean/

Further reports about: Atmospheric EDT Laboratory NASA Propulsion Typhoon Warning clouds

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>