Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Provides Double Vision on Typhoon Matmo

23.07.2014

Two instruments aboard NASA's Aqua satellite provided different views of Typhoon Matmo on its approach to Taiwan today, July 22.

The Moderate Resolution Imaging Spectroradiometer or MODIS instrument snapped a visible picture of Typhoon Matmo's clouds on July 22 at 1:10 a.m. EDT.


On July 22, the MODIS instrument aboard NASA's Aqua satellite captured this visible image of Typhoon Matmo approaching Taiwan.

Image Credit: NASA Goddard MODIS Rapid Response Team


This false-colored infrared image on July 22 at 1:05 a.m. EDT from NASA's Aqua satellite shows a large area of powerful thunderstorms with high, cold (purple) cloud tops in Typhoon Matmo.

Image Credit: NASA JPL, Ed Olsen

The MODIS image showed a center obscured by clouds. Bands of thunderstorms wrapped tightly into the center of circulation, creating the signature comma shape of a mature tropical cyclone. At the time of the image, the center was southeast of the southeastern tip of Taiwan. The image also showed that the southernmost band of thunderstorms were affecting Luzon, in the northern Philippines.

The second instrument aboard Aqua captured infrared data that showed temperatures of clouds. The Atmospheric Infrared Sounder or AIRS instrument gathered infrared data that was false-colored at NASA's Jet Propulsion Laboratory in Pasadena, California and made into an image.

... more about:
»Atmospheric »EDT »Laboratory »NASA »Propulsion »Typhoon »Warning »clouds

The AIRS image also did not show an open eye in Matmo, but did show powerful thunderstorms with very cold cloud top temperatures wrapped tightly around the center. Matmo's northwestern side was already over eastern Taiwan, while the southwestern quadrant blanketed the northern Philippines.

By 1500 UTC (11 a.m. EDT), the Joint Typhoon Warning Center noted that radar data from Taiwan showed the eye had become more visible as the storm was making landfall on the country's east coast. Maximum sustained winds were near 85 knots (97.8 mph/157.4 kph).

Matmo was centered near 23.0 north latitude and 121.6 east longitude, about 158 nautical miles (181.8 miles/292.6 km) south of Taipei, Taiwan. Matmo was moving to the northwest at 9 knots (10.3 mph).   

Matmo is generating 30-foot (9.1 meter) high seas which means rough seas and dangerous swells for the east coast of Taiwan in addition to typhoon-force winds, heavy rainfall and flash flooding potential. The Taiwan Central Weather Bureau has issued warnings for the entire country. Those warnings can be seen on their website: http://www.cwb.gov.tw/.

The Joint Typhoon Warning Center (JTWC) expects the system to dissipate in two days but only after moving across Taiwan, moving into the Taiwan Strait and landfalling again in eastern China. Once Matmo exits Taiwan, the JTWC doesn't expect Matmo to strengthen before its second landfall.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/10w-northwest-pacific-ocean/

Further reports about: Atmospheric EDT Laboratory NASA Propulsion Typhoon Warning clouds

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>