Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Provides Double Vision on Typhoon Matmo

23.07.2014

Two instruments aboard NASA's Aqua satellite provided different views of Typhoon Matmo on its approach to Taiwan today, July 22.

The Moderate Resolution Imaging Spectroradiometer or MODIS instrument snapped a visible picture of Typhoon Matmo's clouds on July 22 at 1:10 a.m. EDT.


On July 22, the MODIS instrument aboard NASA's Aqua satellite captured this visible image of Typhoon Matmo approaching Taiwan.

Image Credit: NASA Goddard MODIS Rapid Response Team


This false-colored infrared image on July 22 at 1:05 a.m. EDT from NASA's Aqua satellite shows a large area of powerful thunderstorms with high, cold (purple) cloud tops in Typhoon Matmo.

Image Credit: NASA JPL, Ed Olsen

The MODIS image showed a center obscured by clouds. Bands of thunderstorms wrapped tightly into the center of circulation, creating the signature comma shape of a mature tropical cyclone. At the time of the image, the center was southeast of the southeastern tip of Taiwan. The image also showed that the southernmost band of thunderstorms were affecting Luzon, in the northern Philippines.

The second instrument aboard Aqua captured infrared data that showed temperatures of clouds. The Atmospheric Infrared Sounder or AIRS instrument gathered infrared data that was false-colored at NASA's Jet Propulsion Laboratory in Pasadena, California and made into an image.

... more about:
»Atmospheric »EDT »Laboratory »NASA »Propulsion »Typhoon »Warning »clouds

The AIRS image also did not show an open eye in Matmo, but did show powerful thunderstorms with very cold cloud top temperatures wrapped tightly around the center. Matmo's northwestern side was already over eastern Taiwan, while the southwestern quadrant blanketed the northern Philippines.

By 1500 UTC (11 a.m. EDT), the Joint Typhoon Warning Center noted that radar data from Taiwan showed the eye had become more visible as the storm was making landfall on the country's east coast. Maximum sustained winds were near 85 knots (97.8 mph/157.4 kph).

Matmo was centered near 23.0 north latitude and 121.6 east longitude, about 158 nautical miles (181.8 miles/292.6 km) south of Taipei, Taiwan. Matmo was moving to the northwest at 9 knots (10.3 mph).   

Matmo is generating 30-foot (9.1 meter) high seas which means rough seas and dangerous swells for the east coast of Taiwan in addition to typhoon-force winds, heavy rainfall and flash flooding potential. The Taiwan Central Weather Bureau has issued warnings for the entire country. Those warnings can be seen on their website: http://www.cwb.gov.tw/.

The Joint Typhoon Warning Center (JTWC) expects the system to dissipate in two days but only after moving across Taiwan, moving into the Taiwan Strait and landfalling again in eastern China. Once Matmo exits Taiwan, the JTWC doesn't expect Matmo to strengthen before its second landfall.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/10w-northwest-pacific-ocean/

Further reports about: Atmospheric EDT Laboratory NASA Propulsion Typhoon Warning clouds

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>