Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA, NOAA Data Show Significant Antarctic Ozone Hole Remains

21.10.2011
The Antarctic ozone hole, which yawns wide every Southern Hemisphere spring, reached its annual peak on Sept. 12. It stretched to 10.05 million square miles, the ninth largest ozone hole on record. Above the South Pole, the ozone hole reached its deepest point of the season on Oct. 9, tying this year for the 10th lowest in this 26-year record.

NASA and the National Oceanic and Atmospheric Administration (NOAA) use balloon-borne instruments, ground-based instruments and satellites to monitor the annual Antarctic ozone hole, global levels of ozone in the stratosphere and the manmade chemicals that contribute to ozone depletion.

"The colder than average temperatures in the stratosphere this year caused a larger than average ozone hole," said Paul Newman, chief scientist for atmospheres at NASA's Goddard Space Flight Center in Greenbelt, Md. "Even though it was relatively large, the area of this year's ozone hole was within the range we'd expect given the levels of manmade ozone-depleting chemicals that continue to persist in the atmosphere."

The ozone layer helps protect the planet's surface from harmful ultraviolet radiation. Ozone depletion results in more incoming radiation that can hit the surface, elevating the risk of skin cancer and other harmful effects.

"The manmade chemicals known to destroy ozone are slowly declining because of international action, but there are still large amounts of these chemicals doing damage," said James Butler, director of NOAA's Global Monitoring Division in Boulder, Colo.

In the Antarctic spring (August and September) the sun begins rising again after several months of darkness and polar-circling winds keep cold air trapped above the continent. Sunlight-sparked reactions involving ice clouds and manmade chemicals begin eating away at the ozone. Most years, the conditions for ozone depletion ease before early December when the seasonal hole closes.

Levels of most ozone-depleting chemicals in the atmosphere have been gradually declining as the result of the 1987 Montreal Protocol, an international treaty to protect the ozone layer. That international treaty caused the phase-out of ozone-depleting chemicals, which had been used widely in refrigeration, as solvents and in aerosol spray cans.

However, most of those chemicals remain in the atmosphere for decades. Global atmospheric computer models predict that stratospheric ozone could recover by midcentury, but the ozone hole in the Antarctic will likely persist one to two decades longer, according to the latest analysis in the 2010 Quadrennial Ozone Assessment issued by the World Meteorological Organization and United Nations Environment Programme, with co-authors from NASA and NOAA.

NASA currently measures ozone in the stratosphere with the Dutch-Finnish Ozone Monitoring Instrument, or OMI, on board the Aura satellite. OMI continues a NASA legacy of monitoring the ozone layer from space that dates back to 1972 with launch of the Nimbus-4 satellite. The instrument measured the 2011 ozone hole at its deepest at 95 Dobson units on Oct. 8 this year. This differs slightly from NOAA's balloon-borne ozone observations from the South Pole (102 Dobson units) because OMI measures ozone across the entire Antarctic region.

That satellite-monitoring legacy will continue with the launch of NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project, known as NPP, on Oct. 28. The satellite will carry a new ozone-monitoring instrument, the Ozone Mapping and Profiler Suite. The instruments will provide more detailed daily, global ozone measurements than ever before to continue observing the ozone layer's gradual recovery.

It will take a few years of averaging yearly lows in Antarctic ozone to discern evidence of recovery in ozone levels because seasonal cycles and other variable natural factors -- from the temperature of the atmosphere to the stability of atmospheric layers -- can make ozone levels dip and soar from day to day and year to year.

NOAA has been tracking ozone depletion around the globe, including the South Pole, from several perspectives. NOAA researchers have used balloons to loft instruments 18 miles into the atmosphere for more than 24 years to collect detailed profiles of ozone levels from the surface up. NOAA also tracks ozone with ground-based instruments and from space.

For the updates on the status of the Antarctic ozone layer, visit:
http://ozonewatch.gsfc.nasa.gov
For more information on the Antarctic ozone hole, visit:
http://www.ozonelayer.noaa.gov
Steve Cole
Headquarters, Washington
202-358-0918
stephen.e.cole@nasa.gov

Patrick Lynch
Goddard Space Flight Center, Greenbelt, Md.
301-286-3854/757-897-2047
patrick.lynch@nasa.gov

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/home/hqnews/2011/oct/HQ_11-357_Ozonehole_2011.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>