Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA/NOAA's Suomi NPP captures night-time view of Sandy's landfall

01.11.2012
As Hurricane Sandy made a historic landfall on the New Jersey coast during the night of Oct. 29, the Visible Infrared Imaging Radiometer Suite (VIIRS) on NASA/NOAA's Suomi National Polar-orbiting Partnership (NPP) satellite captured this night-time view of the storm.

This image provided by University of Wisconsin-Madison is a composite of several satellite passes over North America taken 16 to18 hours before Sandy's landfall.


As Hurricane Sandy made a historic landfall on the New Jersey coast during the night of Oct. 29, the Visible Infrared Imaging Radiometer Suite on NASA/NOAA's Suomi National Polar-orbiting Partnership satellite captured this night-time view of the storm. This image provided by University of Wisconsin-Madison is a composite of several satellite passes over North America taken 16 to18 hours before Sandy's landfall.

Credit: University of Wisconsin, CIMSS/NASA/NOAA

The storm was captured by a special "day-night band," which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as auroras, airglow, gas flares, city lights, fires and reflected moonlight. City lights in the south and mid-section of the United States are visible in the image.

William Straka, associate researcher at Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, explains that since there was a full moon there was the maximum illumination of the clouds.

"You can see that Sandy is pulling energy both from Canada as well as off in the eastern part of the Atlantic," Straka said. "Typically forecasters use only the infrared bands at night to look at the structure of the storm. However, using images from the new day/night band sensor in addition to the thermal channels can provide a more complete and unique view of hurricanes at night."

VIIRS is one of five instruments onboard Suomi NPP. The mission is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the U.S. Department of Defense.

On Monday, Oct. 29, at 8 p.m. EDT, Hurricane Sandy made landfall 5 miles (10 km) south of Atlantic City, N.J., near 39 degrees 24 minutes north latitude and 74 degrees 30 minutes west longitude. At the time of landfall, Sandy's maximum sustained winds were near 80 mph (130 kph) and it was moving to the west-northwest at 23 mph (37 kph). According to the National Hurricane Center, hurricane-force winds extended outward to 175 miles (280 km) from the center, and tropical-storm-force winds extended 485 miles (780 km). Sandy's minimum central pressure at the time of landfall was 946 millibars or 27.93 inches.

Suomi NPP was launched on Oct. 28, 2011, from Vandenberg Air Force Base, Calif. One year later, Suomi NPP has orbited Earth more than 5,000 times and begun returning images and data that provide critical weather and climate measurements of complex Earth systems.

Suomi NPP observes Earth's surface twice every 24-hour day, once in daylight and once at night. NPP flies 512 miles (824 kilometers) above the surface in a polar orbit, circling the planet about 14 times a day. NPP sends its data once an orbit to the ground station in Svalbard, Norway, and continuously to local direct broadcast users.

For storm history, images and video of Hurricane Sandy, please visit the following websites:

http://www.nnvl.noaa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Sandy.html
http://cimss.ssec.wisc.edu/goes/blog/
http://earthobservatory.nasa.gov/NaturalHazards/event.php?id=79504

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>