Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA measuring Tropical Storm Debby's heavy rains from space

27.06.2012
Tropical Storm Debby continues to be a big rainmaker in Florida and southern Georgia and NASA's TRMM satellite has measured those rainfall rates from space, showing where heavy rain has fallen.

The Tropical Rainfall Measuring Mission (TRMM) satellite is basically a flying rain gauge in space. Scientists use TRMM data to calculate rainfall rates and rain totals from space. TRMM imagery from June 25 showed Debby's heaviest rains were falling at a rate of over 2 inches (50 mm) per hour, and to the southeast of the center.


In this image of rainfall on June 24, 2012, created by NASA's TRMM satellite, a large band of intense rain (darker red) lies just off Florida's western shore, while light (blue areas) to moderate rain covers a broad area of the Florida peninsula.

Moderate rain (shown in green) north and east of the center extends from near Tampa Bay all the way around to near Panama City. Tornado symbols mark the locations of tornado reports.

Credit: SSAI/NASA, Hal Pierce

Debby has been a huge rainmaker. For example, Debby dumped nearly 7 inches of rain on Gainesville Sunday, June 24. That was Gainsville's second highest one day total. Numerous other reports of between 6 and 10 inches of rain have already been reported as a result of Debby.

Debby's Status Today:

Today, June 25, 2012, a tropical storm warning is in effect for the Florida Gulf coast from Mexico Beach to Englewood. At 8 a.m. EDT (1200 UTC), Debby had maximum sustained winds near 45 mph (75 kmh). It was still centered in the northeastern Gulf of Mexico, about 85 miles (140 km) west of Cedar Key, near 28.9 north latitude and 84.5 west longitude. The estimated minimum central pressure is 991 millibars. Debby is slowly moving toward the east near 3 mph (6 kmh) and is expected to move east-northeastward in the next couple of days, according to the National Hurricane Center (NHC). NHC forecasters note that Debby's center will weaken to a depression while moving over northern Florida in the next day or two.
Debby's History:

Tropical Storm Debby formed on the 23rd of June 2012 in the central Gulf of Mexico, becoming the earliest 4th named storm on record. Debby began as an area of low pressure that moved out of the northwestern Caribbean and into the Gulf. After forming on the afternoon of the 23rd, Debby has moved very slowly under the influence of weak steering currents.

Debby drifted ever so slowly northward on the night of the 23rd before turning northeast later on the morning of the 24th towards the northeast Gulf Coast of Florida. Despite its slow forward progress and lack of intensification, Debby has already lashed Florida with heavy rain as well as tornadoes.

What TRMM Data Reveals:

The Tropical Rainfall Measuring Mission (or TRMM) satellite captured an image of Debby when it passed over the storm in the north central Gulf of Mexico on the morning of June 24 at 11:51 UTC (6:51 a.m. CDT). TRMM revealed that most of the rain associated with Debby is well away from the center. A large area of moderate rain north and east of the center extends from near Tampa Bay all the way around to near Panama City. A large band of intense rain lay just off shore, while light to moderate rain covered a broad area of the Florida peninsula.
How Rainfall is Mapped:

Data from several TRMM instruments are used to create rainfall images at NASA's Goddard Space Flight Center in Greenbelt, Md. Rain rates in the center of image swaths are from the TRMM Precipitation Radar (PR), while those in the outer swaths are from the TRMM Microwave Imager (TMI). The rain rates are then overlaid on infrared (IR) and visible data from the TRMM Visible Infrared Scanner (VIRS). TRMM is a joint mission between NASA and the Japanese space agency JAXA.
Coastal flooding and the potential for isolated tornadoes are continuing threats today. The storm is also expected to continue to bring very heavy rains to northern and central Florida where some areas could see in excess of 20 inches of rain. Storm speed is what matters most when it comes to rainfall; the slower the storm, the more time it has to rain over a given area.

Images and updates http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Debby.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>