Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA loosens GRIP on Atlantic hurricane season

07.10.2010
NASA wrapped up one of its largest hurricane research efforts ever last week after nearly two months of flights that broke new ground in the study of tropical cyclones and delivered data that scientists will now be able to analyze for years to come.

While the 2010 hurricane season has been a rather quiet one for coastal dwellers, the churning meteorology of the Atlantic Ocean and Caribbean Sea seemed to cooperate well with the science goals of Genesis and Rapid Intensification Processes (GRIP) experiment.

Those goals were designed to answer some of the most fundamental yet still unanswered questions of hurricane science: What ultimately causes hurricanes to form? Why do some tropical depressions become strong hurricanes, while others dissipate? What causes the rapid strengthening often seen in hurricanes?

Mission scientists wanted to capture data on hurricanes as they formed and intensified. Ideally, the NASA planes – the DC-8, WB-57 and Global Hawk – would also fly over systems that were weakening, or that were expected to form into hurricanes yet did not. When the flights had ended, all those goals had been met.

"It was successful beyond my reasonable expectations. It requires cooperation with the weather, and good luck with the aircraft," said mission scientist Ed Zipser, of the University of Utah. "It's not so much a logistical challenge as it is a toss of the dice by Mother Nature during our time available. But it takes a good airplane, a skillful crew and good luck with the equipment."

Flying to Hurricanes

Hurricanes Earl and Karl each became important objects of observation for scientists during GRIP. The DC-8 flew to Earl four times, criss-crossing the storm as it intensified to a category 4 hurricane and then weakened. On the final Earl flight, as the storm was breaking down and losing strength, the Global Hawk made its debut hurricane flight and passed over Earl's eye in concert with the DC-8, providing valuable comparison measurements for the instruments on-board both aircraft. The WB-57 also flew Earl as well as Karl.

At the outset, scientists hoped that several aspects of GRIP would help gather important data as well as complete a couple of technical accomplishments. First, collaboration with the Air Force, NOAA and the National Science Foundation would allow scientists to observe a single storm system with as many as six aircraft. Second, GRIP featured the debut of NASA's Global Hawk drone in a hurricane research capacity. The unmanned plane's 24-hour flight range gave scientists the ability to directly observe a hurricane as it changed over time and distance in a way that conventional planes and satellites have not done before.

Both of these aspects of GRIP were used to great effect during the two major hurricanes observed during the campaign, Earl and Karl. "We're all very pleased we were able to get the Global Hawk over a hurricane," said mission scientist Gerry Heymsfield, of NASA's Goddard Space Flight Center, Greenbelt, Md. "There was a question about that. That's a major accomplishment both on the science side and the capability side. It really paves the way for future research."

As the campaign went on, Global Hawk pilots, based remotely at Dryden Flight Research Center, near Palmdale, Calif., grew more comfortable with the drone's capability at 60,000 feet and over a hurricane. On Sept. 16 and 17, the Global Hawk made a 25-hour flight that included 20 passes over the eye of Karl as it was emerging into a hurricane – precisely the type of formation and storm development that scientists hoped to capture during GRIP.

"None of our other planes can do that," said GRIP project manager Marilyn Vasques, of Ames Research Center, Moffett Field, Cal. "They've been learning the capabilities of this aircraft at every flight. We challenged it more and more, and the aircraft and Dryden have performed really well."

On that same flight, the collaboration with the other agencies reached full steam, as six aircraft flew over Karl. The DC-8 was even able to follow the storm after it made landfall in Mexico and began to deteriorate. It is unusual to get the clearances to fly over a hurricane once it has reached land, making the scientific payoff all the more valuable. "We were able to capture some rare detail once it made landfall," Zipser said.

What's in the data?

For all the logistics involved in coordinating flights and using a drone designed for military purposes in a scientific campaign, the chief purpose of the experiment remained getting good data. The instruments on-board the GRIP planes provided 3-D observations of storm's cloud and precipitation structures, measurements of wind speed in the horizontal and the vertical dimensions, data on lightning strikes and lidar measurements of clouds and aerosols in and around hurricanes. These are all in addition to the basic yet important measurements of factors such as humidity, pressure and temperature that provide context for more advanced observations.

While scientists will mine the GRIP observations for months and years, the team knows now that it was mostly able to fly over the types of storms and conditions that it wanted to fly over. Both Earl and Karl provided strong examples of rapid intensification. The Global Hawk arrived over Karl shortly after it reached hurricane status, and continued to fly over it as it rapidly strengthened to a Category 3 storm in the next nine to 12 hours. The flights over Karl could provide great insight into the genesis of that system, and the reasons for its rapid intensification soon after it passed over the Yucatan Peninsula and into the Gulf of Mexico.

"The flights into Karl as soon as it emerged over the Gulf and became a hurricane gave us just a fantastic example, and that was the day the Global Hawk did 20 passes over the eye," Zipser said. The GRIP planes were also able to fly to tropical systems – such as Gaston – that were forecast to strengthen and become hurricanes but ultimately did not. In the quest to understand why some tropical depressions become hurricanes and others don't, these were also important flights.

The system known as Gaston formed out of an African easterly wave – one of a number of depressions that routinely form off the coast of Africa and often become hurricanes. It was forecast to become a full-fledged hurricane but it didn't. "It had all the elements to become a storm, so scientifically that's very interesting," Vasques said.

Wrapping up

With the flight portion of the campaign ended, scientists will soon move on to analyzing the data they've gathered, Heymsfield said. Scientists who worked on GRIP and many others will likely mine this cache for years to come. These observations could provide insights with great value to science, which is still trying to fully understand hurricanes, and to society, which could eventually benefit from more accurate forecasts of storm strength and development.

"There will be some quick results. But the rest of it, in my experience, really takes years," Heymsfield said. "This is probably the most timely, coupled experiment that I've ever seen. It's really worked out well. We collected a wealth of data that the scientists are really excited to analyze."

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>