Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017

It was midafternoon, but it was dark in an area in Boulder, Colorado on Aug. 3, 1998. A thick cloud appeared overhead and dimmed the land below for more than 30 minutes. Well-calibrated radiometers showed that there were very low levels of light reaching the ground, sufficiently low that researchers decided to simulate this interesting event with computer models. Now in 2017, inspired by the event in Boulder, NASA scientists will explore the moon's eclipse of the sun to learn more about Earth's energy system.

On Aug. 21, 2017, scientists are looking to this year's total solar eclipse passing across America to improve our modelling capabilities of Earth's energy. Guoyong Wen, a NASA scientist working for Morgan State University in Baltimore, is leading a team to gather data from the ground and satellites before, during and after the eclipse so they can simulate this year's eclipse using an advanced computer model, called a 3-D radiative transfer model.


DSCOVR's Earth Polychromatic Imaging Camera (EPIC) will capture images similar to this one from the Lagrange 1 point, about a million miles away from Earth.

Credits: NASA/Katy Mersmann

If successful, Wen and his team will help develop new calculations that improve our estimates of the amount of solar energy reaching the ground, and our understanding of one of the key players in regulating Earth's energy system, clouds.

Earth's energy system is in a constant dance to maintain a balance between incoming radiation from the sun and outgoing radiation from Earth to space, which scientists call the Earth's energy budget. The role of clouds, both thick and thin, is important in their effect on energy balance.

Like a giant cloud, the moon during the 2017 total solar eclipse will cast a large shadow across a swath of the United States. Wen and his team already know the dimensions and light-blocking properties of the moon, but will use ground and space instruments to learn how this large shadow affects the amount of sunlight reaching Earth's surface, especially around the edges of the shadow.

"This is the first time we're able to use measurements from the ground and from space to simulate the moon's shadow going across the face of Earth in the United States and calculating energy reaching the Earth," said Wen. Scientists have made extensive atmospheric measurements during eclipses before, but this is the first opportunity to collect coordinated data from the ground and from a spacecraft that observes the entire sunlit Earth during an eclipse, thanks to the National Oceanic and Atmospheric Administration's Deep Space Climate Observatory launched (DSCOVR) in February 2015.

Even though the moon blocking the sun during a solar eclipse and clouds blocking sunlight to Earth's surface are two different phenomena, both require similar mathematical calculations to accurately understand their effects. Wen anticipates this experiment will help improve the current model calculations and our knowledge of clouds, specifically thicker, low altitude clouds that may cover about 30 percent of the planet at any given time.

In this experiment, Wen and his team will simulate the total solar eclipse in a 3-D radiative transfer model, which helps scientists understand how energy is propagated on Earth. Currently, models tend to depict clouds in one dimension. In many cases, these one dimensional calculations can create useful science models for understanding the atmosphere. Sometimes though, a three-dimensional calculation is needed to provide more accurate results. The big difference is that 3-D clouds reflect or scatter solar energy in many directions, from the top and bottom, and also out of the sides of clouds. This 3-D behavior results in different amounts of energy reaching the ground than a one-dimensional model could predict.

"We're testing the ability to do a certain kind of complex calculation, a test of a 3-D mathematical technique, to see if this is an improvement over the previous technique," said Jay Herman, scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and co-investigator of the project. "If this is successful, then we will have a better tool to implement in climate models and can use it to answer questions and the Earth's energy budget and climate." For the upcoming eclipse, Wen and his team members will be stationed in Casper, Wyoming, and Columbia, Missouri to gather information on the amount of energy being transmitted to and from Earth before, during and right after the eclipse with several ground instruments.

A ground-based, NASA-developed Pandora Spectrometer Instrument will provide information on how much of any given wavelength of light is present, and a pyranometer will measure total solar energy from all directions coming down toward the surface. Immediately before and after the eclipse scientists will measure other information such as the amount of absorbing trace gases in the atmosphere, such as ozone, nitrogen dioxide and small aerosol particles to also use in the 3-D model.

Meanwhile in space, NASA's Earth Polychromatic Imaging Camera, or EPIC, instrument aboard the DSCOVR spacecraft, will observe the light leaving Earth and allow scientists to estimate of the amount of light reaching the earth's surface. Additionally, NASA's two MODIS satellite instruments, aboard the agency's Terra and Aqua satellites, launched in 1999 and 2002, respectively, will provide observations of atmospheric and surface conditions at times before and after the eclipse. The scientists will then combine ground measurements with those observed by the spacecraft.

This experiment complements NASA's decades-long commitment to observing and understanding contributions to Earth's energy budget. For more than 30 years, NASA has measured and calculated the amount of solar energy hitting the top of our atmosphere, the amount of the sun's energy reflected back to space and how much thermal energy is emitted by our planet to space. These measurements have been possible thanks to instruments and missions such as ACRIMSAT and SOLSTICE (launched in 1991), and SORCE, launched in 2003 as well as the series of CERES instruments flown aboard Terra, Aqua, and Suomi-NPP (launched in 2011).

This fall, NASA will continue to monitor the sun-Earth relationship by launching the Total and Spectral Solar Irradiance Sensor-1, or TSIS-1, to the International Space Station and the sixth Clouds and the Earth's Radiant Energy System CERES instrument, CERES FM6, to orbit later this year. Five CERES instruments are currently on orbit aboard three satellites.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>