Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA looks inside and outside of Tropical Cyclone Pam

11.03.2015

NASA's Terra satellite provided an outside look at Tropical Cyclone Pam while the RapidScat instrument that flies aboard the International Space Station provided an inside look at the surface winds generated by the storm. The GPM core satellite provided another inside look at Pam and provided data on where the heavy rainfall was occurring within the storm.

On March 9 and 10, Tropical Cyclone Pam strengthened to hurricane-force as it neared Vanuatu in the Southern Pacific Ocean.


The GPM satellite showed that Pam was dropping rain at a rate of 133.5 mm (5.26 inches) per hour and thunderstorm tops reached heights over 16.6 km (10.3 miles).

Image Credit: NASA/JAXA/SSAI, Hal Pierce

On March 10 (11 p.m. local time), the Vanuatu Meteorology and Geo-Hazards Department (VMGD) issued a Severe Weather Warning Bulletin for the Northern Islands of Vanuatu. The warning noted that Tropical Cyclone Pam was located northeast of the Torba province, and was slowly moving in a south southeasterly direction.

The VMGD forecast noted: Heavy rainfall expected to affect Torba, Sanma and Penama. Flash floods and expansion of river banks possible. People in these affected areas are advised to take extra precautions, especially those areas close to river banks and in low lying areas. For updated warnings, visit: http://www.meteo.gov.vu/.

The MODIS or Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Terra satellite captured a visible image of Tropical Cyclone Pam in the South Pacific Ocean on March 9 at 23:00 UTC (7:00 p.m. EDT).

The image showed that Pam's center had consolidated within the previous 24 hours and was represented by a tight band of thunderstorms circling it. A wide band of fragmented thunderstorms in the northern and western quadrants of the storm were wrapping into the center from the north. Another thick, fragmented band of thunderstorms curved from the east to the south and west, where it wrapped into the center of circulation.

The MODIS image showed that the southern band of thunderstorms were over Gaua and Vanua Lava, the largest and second largest of the Banks Islands in Torba Province, Vanuatu.

The GPM or Global Precipitation Mission's Core Observatory flew over Pam on March 9, 2015 at 0501 UTC (1:01 a.m. EDT). Pam formed earlier in the day in the Solomon Islands in the Southern Pacific Ocean. Rainfall from GPM's Microwave Imager (GMI) showed that Pam was dropping rain at a rate of 133.5 mm (5.26 inches) per hour.

A 3-D image of the thunderstorms that make up Pam was created at NASA's Goddard Space Flight Center in Greenbelt, Maryland. In the 3-D image, very powerful thunderstorms measured by GPM's Radar (Ku Band) reached heights of over 16.6 km (10.3 miles).

The precipitation within these tall storms are providing energy called latent heat that drives the circulation of the storm. Usually, the more heat that is being released, the more intense the storm will become. This heating works best when it occurs near the center of the storm.

The International Space Station's RapidScat instrument captured a look at Tropical Cyclone Pam's surface winds. RapidScat measured the winds from March 9 at 3:46 to 5:19 UTC. Measurements revealed that sustained winds at the surface were as high as 56 mph/90 kph/25 meters per second, near the center and northern quadrant of the storm.

On March 10 at 1500 UTC (11 a.m. EDT), Pam's maximum sustained winds had increased to 80 knots (92 mph/148.2 kph). Pam was centered near 10.8 south latitude and 170.2 east longitude, about 651 nautical miles (749.7 miles/ 1,206 km) northwest of Suva, Fiji. Pam has tracked south-southwestward at 4 knots (4.6 mph/7.4 kph).

The Joint Typhoon Warning Center (JTWC) predicts that Pam will be increasingly powerful and become a dangerous category five tropical cyclone on the Saffir-Simpson wind scale. JTWC expects Pam's winds to strengthen to about 140 knots (161.1 mph/259.3 kph) in the next couple of days as it continues in a southerly direction through the Southern Pacific Ocean.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>