Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NASA Laser Technology Reveals How Ice Measures Up

29.01.2014
New results from NASA's MABEL campaign demonstrated that a photon-counting technique will allow researchers to track the melt or growth of Earth’s frozen regions.

When a high-altitude aircraft flew over the icy Arctic Ocean and the snow-covered terrain of Greenland in April 2012, it was the first polar test of a new laser-based technology to measure the height of Earth from space.


NASA's Multiple Altimeter Beam Experimental Lidar flew over Southwest Greenland's glaciers and sea ice to test a new method of measuring the height of Earth from space.
Image Credit: NASA/Tim Williams


MABEL, short for "Multiple Altimeter Beam Experimental Lidar," serves as an ICESat-2 simulator.
Image Credit: NASA/Kelly Brunt

Aboard that aircraft flew the Multiple Altimeter Beam Experimental Lidar, or MABEL, which is an airborne test bed instrument for NASA's ICESat-2 satellite mission slated to launch in 2017. Both MABEL and ICESat-2's ATLAS instrument are photon counters – they send out pulses of green laser light and time how long it takes individual light photons to bounce off Earth's surface and return. That time, along with ATLAS’ exact position from an onboard GPS, will be plugged into computer programs to tell researchers the elevation of Earth's surface – measuring change to as little as the width of a pencil.

This kind of photon-counting technology is novel for satellites; from 2003 to 2009, ICESat-1’s instrument looked at the intensity of a returned laser signal, which included many photons. So getting individual photon data from MABEL helps scientists prepare for the vast amounts of elevation data they'll get from ICESat-2.

"Using the individual photons to measure surface elevation is a really new thing," said Ron Kwok, a senior research scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It's never been done from orbiting satellites, and it hasn't really been done much with airborne instruments, either."

ICESat-2 is tasked with measuring elevation across Earth's entire surface, including vegetation and oceans, but with a focus on change in the frozen areas of the planet, where scientists have observed dramatic impacts from climate change. There, two types of ice – ice sheets and sea ice – reflect light photons in different patterns. Ice sheets and glaciers are found on land, like Greenland and Antarctica, and are formed as frozen snow and rain accumulates. Sea ice, on the other hand, is frozen seawater, found floating in the Arctic Ocean and offshore of Antarctica.

MABEL's 2012 Greenland campaign was designed to observe a range of interesting icy features, said Bill Cook, MABEL's lead scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. With the photon counts from different surfaces, other scientists could start analyzing the data to determine which methods of analyzing the data allow them to best measure the elevation of Earth's surface.

"We wanted to get a wide variety of target types, so that the science team would have a lot of data to develop algorithms," Cook said. "This was our first real dedicated science mission."

The flights over the ocean near Greenland, for example, allowed researchers to demonstrate that they can measure the height difference between open water and sea ice, which is key to determining the ice thickness. MABEL can detect enough of the laser light photons that bounce off Earth surface and return to the instrument, and programs can then make necessary elevation calculations, Cook said.

"Part of what we're doing with MABEL is to demonstrate ICESat-2's instrument is going to have the right sensitivity to do the measurements," Cook said. "You can do this photon counting if you have enough photons."

In an article recently published in the Journal of Atmospheric and Oceanic Technology, Kwok and his colleagues showed how to calculate elevation from MABEL data, and do so over different types of ice – from open water, to thin, glassy ice, to the snow-covered ice.

"We were pretty happy with the precision," Kwok said. "The flat areas are flat to centimeter level, and the rough areas are rough." And the density of photons detection could also tell researchers what type of ice the instrument was flying over.

The contours of the icy surface are also important when monitoring ice sheets and glaciers covering land. The original ICESat-1 mission employed a single laser, which made it more difficult to measure whether the ice sheet had gained or lost elevation. With a single beam, when the instrument flew over a spot a second time, researchers couldn't tell if the snowpack had melted or if the laser was slightly off and pointed down a hill. Because of this, scientists needed 10 passes over an area to determine whether the ice sheet was changing, said Kelly Brunt, a research scientist at NASA Goddard.

"ICESat-1 was fantastic, but it was a single beam instrument," Brunt said. "We're more interested in repeating tracks to monitor change – that's hard to do."

ICESat-2 addresses this problem by splitting the laser into six beams. These are arranged in three pairs, and the beams within a pair are spaced 295 feet (90 meters), or just less than a football field apart. By comparing the height of one site to the height of its neighbor, scientists can determine the terrain's general slope.

Brunt and her colleagues used MABEL data from the 2012 Greenland campaign to try to detect slopes as shallow as 4 percent incline; their results will be published in the May 2014 issue of the journal Geoscience and Remote Sensing Letters. They counted only a portion of the photons, in order to simulate the weaker laser beams that ICESat-2 will carry. With computer programs to determine the slope, the researchers verified it against results from earlier missions.

"The precision is great," Brunt said. "We're very confident that with ICESat-2's beam pair, we can see slope."

And there are still more things for MABEL to measure. The instrument team is planning a 2014 summer campaign to fly over glaciers and ice sheets in warmer weather. "We want to see what the effects of the melt is," Cook said. "How do glaciers look if they're warmer, rather than colder?"

Kate Ramsayer
NASA's Goddard Space Flight Center, Greenbelt, Md.

Kate Ramsayer | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/new-nasa-laser-technology-reveals-how-ice-measures-up/#.UugjTbQo7IU

More articles from Earth Sciences:

nachricht Oceans may be large, overlooked source of hydrogen gas
21.07.2016 | Duke University

nachricht Groundwater discharge to upper Colorado River Basin varies in response to drought
21.07.2016 | US Geological Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>